Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):116–136. doi: 10.1016/S0006-3495(00)76277-1

DNA rings with multiple energy minima.

P B Furrer 1, R S Manning 1, J H Maddocks 1
PMCID: PMC1300919  PMID: 10866941

Abstract

Within the context of DNA rings, we analyze the relationship between intrinsic shape and the existence of multiple stable equilibria, either nicked or cyclized with the same link. A simple test, based on a perturbation expansion of symmetry breaking within a continuum elastic rod model, provides good predictions of the occurrence of such multiple equilibria. The reliability of these predictions is verified by direct computation of nicked and cyclized equilibria for several thousand DNA minicircles with lengths of 200 and 900 bp. Furthermore, our computations of equilibria for nicked rings predict properties of the equilibrium distribution of link, as calculated by much more computationally intensive Monte Carlo simulations.

Full Text

The Full Text of this article is available as a PDF (361.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer W. R., Lund R. A., White J. H. Twist and writhe of a DNA loop containing intrinsic bends. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):833–837. doi: 10.1073/pnas.90.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benham C. J. An elastic model of the large-scale structure of duplex DNA. Biopolymers. 1979 Mar;18(3):609–623. doi: 10.1002/bip.1979.360180310. [DOI] [PubMed] [Google Scholar]
  3. Bolshoy A., McNamara P., Harrington R. E., Trifonov E. N. Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2312–2316. doi: 10.1073/pnas.88.6.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeSantis P., Palleschi A., Savino M., Scipioni A. Theoretical prediction of the gel electrophoretic retardation changes due to point mutations in a tract of SV40 DNA. Biophys Chem. 1992 Feb;42(2):147–152. doi: 10.1016/0301-4622(92)85004-n. [DOI] [PubMed] [Google Scholar]
  5. Depew D. E., Wang J. C. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275–4279. doi: 10.1073/pnas.72.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dubochet J., Adrian M., Dustin I., Furrer P., Stasiak A. Cryoelectron microscopy of DNA molecules in solution. Methods Enzymol. 1992;211:507–518. doi: 10.1016/0076-6879(92)11028-h. [DOI] [PubMed] [Google Scholar]
  7. Fuller F. B. The writhing number of a space curve. Proc Natl Acad Sci U S A. 1971 Apr;68(4):815–819. doi: 10.1073/pnas.68.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horowitz D. S., Wang J. C. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol. 1984 Feb 15;173(1):75–91. doi: 10.1016/0022-2836(84)90404-2. [DOI] [PubMed] [Google Scholar]
  9. Kahn J. D., Crothers D. M. Measurement of the DNA bend angle induced by the catabolite activator protein using Monte Carlo simulation of cyclization kinetics. J Mol Biol. 1998 Feb 13;276(1):287–309. doi: 10.1006/jmbi.1997.1515. [DOI] [PubMed] [Google Scholar]
  10. Kahn J. D., Crothers D. M. Protein-induced bending and DNA cyclization. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6343–6347. doi: 10.1073/pnas.89.14.6343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katritch V., Vologodskii A. The effect of intrinsic curvature on conformational properties of circular DNA. Biophys J. 1997 Mar;72(3):1070–1079. doi: 10.1016/S0006-3495(97)78757-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klenin K. V., Frank-Kamenetskii M. D., Langowski J. Modulation of intramolecular interactions in superhelical DNA by curved sequences: a Monte Carlo simulation study. Biophys J. 1995 Jan;68(1):81–88. doi: 10.1016/S0006-3495(95)80161-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klenin K. V., Vologodskii A. V., Anshelevich V. V., Dykhne A. M., Frank-Kamenetskii M. D. Computer simulation of DNA supercoiling. J Mol Biol. 1991 Feb 5;217(3):413–419. doi: 10.1016/0022-2836(91)90745-r. [DOI] [PubMed] [Google Scholar]
  14. Le Bret M. Catastrophic variation of twist and writhing of circular DNAs with constraint? Biopolymers. 1979 Jul;18(7):1709–1725. doi: 10.1002/bip.1979.360180710. [DOI] [PubMed] [Google Scholar]
  15. Levene S. D., Crothers D. M. Topological distributions and the torsional rigidity of DNA. A Monte Carlo study of DNA circles. J Mol Biol. 1986 May 5;189(1):73–83. doi: 10.1016/0022-2836(86)90382-7. [DOI] [PubMed] [Google Scholar]
  16. Olson W. K. Simulating DNA at low resolution. Curr Opin Struct Biol. 1996 Apr;6(2):242–256. doi: 10.1016/s0959-440x(96)80082-0. [DOI] [PubMed] [Google Scholar]
  17. Pulleyblank D. E., Shure M., Tang D., Vinograd J., Vosberg H. P. Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4280–4284. doi: 10.1073/pnas.72.11.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rippe K., von Hippel P. H., Langowski J. Action at a distance: DNA-looping and initiation of transcription. Trends Biochem Sci. 1995 Dec;20(12):500–506. doi: 10.1016/s0968-0004(00)89117-3. [DOI] [PubMed] [Google Scholar]
  19. Sanghani S. R., Zakrzewska K., Harvey S. C., Lavery R. Molecular modelling of (A4T4NN)n and (T4A4NN)n: sequence elements responsible for curvature. Nucleic Acids Res. 1996 May 1;24(9):1632–1637. doi: 10.1093/nar/24.9.1632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlick T. Modeling superhelical DNA: recent analytical and dynamic approaches. Curr Opin Struct Biol. 1995 Apr;5(2):245–262. doi: 10.1016/0959-440x(95)80083-2. [DOI] [PubMed] [Google Scholar]
  21. Shimada J., Yamakawa H. Moments for DNA topoisomers: the helical wormlike chain. Biopolymers. 1988 Apr;27(4):657–673. doi: 10.1002/bip.360270409. [DOI] [PubMed] [Google Scholar]
  22. Shore D., Baldwin R. L. Energetics of DNA twisting. II. Topoisomer analysis. J Mol Biol. 1983 Nov 15;170(4):983–1007. doi: 10.1016/s0022-2836(83)80199-5. [DOI] [PubMed] [Google Scholar]
  23. Swigon D., Coleman B. D., Tobias I. The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. Biophys J. 1998 May;74(5):2515–2530. doi: 10.1016/S0006-3495(98)77960-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tobias I. A theory of thermal fluctuations in DNA miniplasmids. Biophys J. 1998 May;74(5):2545–2553. doi: 10.1016/S0006-3495(98)77962-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tobias I., Olson W. K. The effect of intrinsic curvature on supercoiling: predictions of elasticity theory. Biopolymers. 1993 Apr;33(4):639–646. doi: 10.1002/bip.360330413. [DOI] [PubMed] [Google Scholar]
  26. Yang Y., Westcott T. P., Pedersen S. C., Tobias I., Olson W. K. Effects of localized bending on DNA supercoiling. Trends Biochem Sci. 1995 Aug;20(8):313–319. doi: 10.1016/s0968-0004(00)89058-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES