Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):153–162. doi: 10.1016/S0006-3495(00)76280-1

Stability analysis of micropipette aspiration of neutrophils.

J Derganc 1, B Bozic 1, S Svetina 1, B Zeks 1
PMCID: PMC1300922  PMID: 10866944

Abstract

During micropipette aspiration, neutrophil leukocytes exhibit a liquid-drop behavior, i.e., if a neutrophil is aspirated by a pressure larger than a certain threshold pressure, it flows continuously into the pipette. The point of the largest aspiration pressure at which the neutrophil can still be held in a stable equilibrium is called the critical point of aspiration. Here, we present a theoretical analysis of the equilibrium behavior and stability of a neutrophil during micropipette aspiration with the aim to rigorously characterize the critical point. We take the energy minimization approach, in which the critical point is well defined as the point of the stability breakdown. We use the basic liquid-drop model of neutrophil rheology extended by considering also the neutrophil elastic area expansivity. Our analysis predicts that the behavior at large pipette radii or small elastic area expansivity is close to the one predicted by the basic liquid-drop model, where the critical point is attained slightly before the projection length reaches the pipette radius. The effect of elastic area expansivity is qualitatively different at smaller pipette radii, where our analysis predicts that the critical point is attained at the projection lengths that may significantly exceed the pipette radius.

Full Text

The Full Text of this article is available as a PDF (113.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dong C., Skalak R. Leukocyte deformability: finite element modeling of large viscoelastic deformation. J Theor Biol. 1992 Sep 21;158(2):173–193. doi: 10.1016/s0022-5193(05)80716-7. [DOI] [PubMed] [Google Scholar]
  2. Drury J. L., Dembo M. Hydrodynamics of micropipette aspiration. Biophys J. 1999 Jan;76(1 Pt 1):110–128. doi: 10.1016/S0006-3495(99)77183-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984 Nov;64(5):1028–1035. [PubMed] [Google Scholar]
  4. Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989 Jul;56(1):151–160. doi: 10.1016/S0006-3495(89)82660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jülicher F, Seifert U. Shape equations for axisymmetric vesicles: A clarification. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 May;49(5):4728–4731. doi: 10.1103/physreve.49.4728. [DOI] [PubMed] [Google Scholar]
  6. Needham D., Hochmuth R. M. A sensitive measure of surface stress in the resting neutrophil. Biophys J. 1992 Jun;61(6):1664–1670. doi: 10.1016/S0006-3495(92)81970-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schmid-Schönbein G. W., Shih Y. Y., Chien S. Morphometry of human leukocytes. Blood. 1980 Nov;56(5):866–875. [PubMed] [Google Scholar]
  8. Schmid-Schönbein G. W., Sung K. L., Tözeren H., Skalak R., Chien S. Passive mechanical properties of human leukocytes. Biophys J. 1981 Oct;36(1):243–256. doi: 10.1016/S0006-3495(81)84726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ting-Beall H. P., Needham D., Hochmuth R. M. Volume and osmotic properties of human neutrophils. Blood. 1993 May 15;81(10):2774–2780. [PubMed] [Google Scholar]
  10. Tsai M. A., Frank R. S., Waugh R. E. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophys J. 1994 Jun;66(6):2166–2172. doi: 10.1016/S0006-3495(94)81012-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tsai M. A., Waugh R. E., Keng P. C. Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys J. 1998 Jun;74(6):3282–3291. doi: 10.1016/S0006-3495(98)78035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yeung A., Evans E. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J. 1989 Jul;56(1):139–149. doi: 10.1016/S0006-3495(89)82659-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zhelev D. V., Needham D., Hochmuth R. M. Role of the membrane cortex in neutrophil deformation in small pipets. Biophys J. 1994 Aug;67(2):696–705. doi: 10.1016/S0006-3495(94)80529-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES