Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):163–183. doi: 10.1016/S0006-3495(00)76281-3

An image-based model of calcium waves in differentiated neuroblastoma cells.

C C Fink 1, B Slepchenko 1, I I Moraru 1, J Watras 1, J C Schaff 1, L M Loew 1
PMCID: PMC1300923  PMID: 10866945

Abstract

Calcium waves produced by bradykinin-induced inositol-1,4, 5-trisphosphate (InsP(3))-mediated release from endoplasmic reticulum (ER) have been imaged in N1E-115 neuroblastoma cells. A model of this process was built using the "virtual cell," a general computational system for integrating experimental image, biochemical, and electrophysiological data. The model geometry was based on a cell for which the calcium wave had been experimentally recorded. The distributions of the relevant cellular components [InsP(3) receptor (InsP(3)R)], sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pumps, bradykinin receptors, and ER] were based on 3D confocal immunofluorescence images. Wherever possible, known biochemical and electrophysiological data were used to constrain the model. The simulation closely matched the spatial and temporal characteristics of the experimental calcium wave. Predictions on different patterns of calcium signals after InsP(3) uncaging or for different cell geometries were confirmed experimentally, thus helping to validate the model. Models in which the spatial distributions of key components are altered suggest that initiation of the wave in the center of the neurite derives from an interplay of soma-biased ER distribution and InsP(3) generation biased toward the neurite. Simulations demonstrate that mobile buffers (like the indicator fura-2) significantly delay initiation and lower the amplitude of the wave. Analysis of the role played by calcium diffusion indicated that the speed of the wave is only slightly dependent on the ability of calcium to diffuse to and activate neighboring InsP(3) receptor sites.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. Atri A., Amundson J., Clapham D., Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J. 1993 Oct;65(4):1727–1739. doi: 10.1016/S0006-3495(93)81191-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benevolensky D., Moraru I. I., Watras J. Micromolar calcium decreases affinity of inositol trisphosphate receptor in vascular smooth muscle. Biochem J. 1994 May 1;299(Pt 3):631–636. doi: 10.1042/bj2990631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  5. Bray D. Reductionism for biochemists: how to survive the protein jungle. Trends Biochem Sci. 1997 Sep;22(9):325–326. doi: 10.1016/s0968-0004(97)01083-9. [DOI] [PubMed] [Google Scholar]
  6. Coggan J. S., Thompson S. H. Cholinergic modulation of the Ca2+ response to bradykinin in neuroblastoma cells. Am J Physiol. 1997 Aug;273(2 Pt 1):C612–C617. doi: 10.1152/ajpcell.1997.273.2.C612. [DOI] [PubMed] [Google Scholar]
  7. Coggan J. S., Thompson S. H. Intracellular calcium signals in response to bradykinin in individual neuroblastoma cells. Am J Physiol. 1995 Oct;269(4 Pt 1):C841–C848. doi: 10.1152/ajpcell.1995.269.4.C841. [DOI] [PubMed] [Google Scholar]
  8. De Young G. W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895–9899. doi: 10.1073/pnas.89.20.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eberhard M., Erne P. Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophys Res Commun. 1991 Oct 15;180(1):209–215. doi: 10.1016/s0006-291x(05)81278-1. [DOI] [PubMed] [Google Scholar]
  10. Farooqui A. A., Anderson D. K., Flynn C., Bradel E., Means E. D., Horrocks L. A. Stimulation of mono- and diacylglycerol lipase activities by bradykinin in neural cultures. Biochem Biophys Res Commun. 1990 Jan 30;166(2):1001–1009. doi: 10.1016/0006-291x(90)90910-f. [DOI] [PubMed] [Google Scholar]
  11. Fink C. C., Slepchenko B., Loew L. M. Determination of time-dependent inositol-1,4,5-trisphosphate concentrations during calcium release in a smooth muscle cell. Biophys J. 1999 Jul;77(1):617–628. doi: 10.1016/S0006-3495(99)76918-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fink C. C., Slepchenko B., Moraru I. I., Schaff J., Watras J., Loew L. M. Morphological control of inositol-1,4,5-trisphosphate-dependent signals. J Cell Biol. 1999 Nov 29;147(5):929–936. doi: 10.1083/jcb.147.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fink C., Morgan F., Loew L. M. Intracellular fluorescent probe concentrations by confocal microscopy. Biophys J. 1998 Oct;75(4):1648–1658. doi: 10.1016/S0006-3495(98)77607-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gill D. L., Chueh S. H. An intracellular (ATP + Mg2+)-dependent calcium pump within the N1E-115 neuronal cell line. J Biol Chem. 1985 Aug 5;260(16):9289–9297. [PubMed] [Google Scholar]
  15. Glanville N. T., Byers D. M., Cook H. W., Spence M. W., Palmer F. B. Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta. 1989 Aug 8;1004(2):169–179. doi: 10.1016/0005-2760(89)90265-8. [DOI] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Herrington J., Park Y. B., Babcock D. F., Hille B. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron. 1996 Jan;16(1):219–228. doi: 10.1016/s0896-6273(00)80038-0. [DOI] [PubMed] [Google Scholar]
  18. Higashida H., Brown D. A. Bradykinin inhibits potassium (M) currents in N1E-115 neuroblastoma cells. Responses resemble those in NG108-15 neuroblastoma x glioma hybrid cells. FEBS Lett. 1987 Aug 17;220(2):302–306. doi: 10.1016/0014-5793(87)80835-9. [DOI] [PubMed] [Google Scholar]
  19. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  20. Iredale P. A., Martin K. F., Hill S. J., Kendall D. A. Agonist-induced changes in [Ca2+]i in N1E-115 cells: differential effects of bradykinin and carbachol. Eur J Pharmacol. 1992 Jun 5;226(2):163–168. doi: 10.1016/0922-4106(92)90178-x. [DOI] [PubMed] [Google Scholar]
  21. Jaffe L. F. Classes and mechanisms of calcium waves. Cell Calcium. 1993 Nov;14(10):736–745. doi: 10.1016/0143-4160(93)90099-r. [DOI] [PubMed] [Google Scholar]
  22. Jafri M. S. A theoretical study of cytosolic calcium waves in Xenopus oocytes. J Theor Biol. 1995 Feb 7;172(3):209–216. doi: 10.1006/jtbi.1995.0017. [DOI] [PubMed] [Google Scholar]
  23. Jafri M. S., Keizer J. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J. 1995 Nov;69(5):2139–2153. doi: 10.1016/S0006-3495(95)80088-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keizer J., De Young G. W. Two roles of Ca2+ in agonist stimulated Ca2+ oscillations. Biophys J. 1992 Mar;61(3):649–660. doi: 10.1016/S0006-3495(92)81870-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keizer J., Levine L. Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. Biophys J. 1996 Dec;71(6):3477–3487. doi: 10.1016/S0006-3495(96)79543-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khodakhah K., Ogden D. Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4976–4980. doi: 10.1073/pnas.90.11.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Klingauf J., Neher E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J. 1997 Feb;72(2 Pt 1):674–690. doi: 10.1016/s0006-3495(97)78704-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kupferman R., Mitra P. P., Hohenberg P. C., Wang S. S. Analytical calculation of intracellular calcium wave characteristics. Biophys J. 1997 Jun;72(6):2430–2444. doi: 10.1016/S0006-3495(97)78888-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Li W., Llopis J., Whitney M., Zlokarnik G., Tsien R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998 Apr 30;392(6679):936–941. doi: 10.1038/31965. [DOI] [PubMed] [Google Scholar]
  30. Li Y. X., Rinzel J. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol. 1994 Feb 21;166(4):461–473. doi: 10.1006/jtbi.1994.1041. [DOI] [PubMed] [Google Scholar]
  31. Luzzi V., Sims C. E., Soughayer J. S., Allbritton N. L. The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. J Biol Chem. 1998 Oct 30;273(44):28657–28662. doi: 10.1074/jbc.273.44.28657. [DOI] [PubMed] [Google Scholar]
  32. Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
  33. Mak D. O., McBride S., Foskett J. K. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15821–15825. doi: 10.1073/pnas.95.26.15821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meldolesi J., Pozzan T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci. 1998 Jan;23(1):10–14. doi: 10.1016/s0968-0004(97)01143-2. [DOI] [PubMed] [Google Scholar]
  35. Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882–887. doi: 10.1038/42264. [DOI] [PubMed] [Google Scholar]
  36. Monck J. R., Williamson R. E., Rogulja I., Fluharty S. J., Williamson J. R. Angiotensin II effects on the cytosolic free Ca2+ concentration in N1E-115 neuroblastoma cells: kinetic properties of the Ca2+ transient measured in single fura-2-loaded cells. J Neurochem. 1990 Jan;54(1):278–287. doi: 10.1111/j.1471-4159.1990.tb13312.x. [DOI] [PubMed] [Google Scholar]
  37. Roth B. J., Yagodin S. V., Holtzclaw L., Russell J. T. A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium. 1995 Jan;17(1):53–64. doi: 10.1016/0143-4160(95)90102-7. [DOI] [PubMed] [Google Scholar]
  38. Schaff J., Fink C. C., Slepchenko B., Carson J. H., Loew L. M. A general computational framework for modeling cellular structure and function. Biophys J. 1997 Sep;73(3):1135–1146. doi: 10.1016/S0006-3495(97)78146-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sneyd J., Keizer J., Sanderson M. J. Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J. 1995 Nov;9(14):1463–1472. doi: 10.1096/fasebj.9.14.7589988. [DOI] [PubMed] [Google Scholar]
  40. Snider R. M., Richelson E. Bradykinin receptor-mediated cyclic GMP formation in a nerve cell population (murine neuroblastoma clone N1E-115). J Neurochem. 1984 Dec;43(6):1749–1754. doi: 10.1111/j.1471-4159.1984.tb06104.x. [DOI] [PubMed] [Google Scholar]
  41. Tang Y., Othmer H. G. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J. 1994 Dec;67(6):2223–2235. doi: 10.1016/S0006-3495(94)80707-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Terasaki M., Jaffe L. A. Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J Cell Biol. 1991 Sep;114(5):929–940. doi: 10.1083/jcb.114.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ueda T., Chueh S. H., Noel M. W., Gill D. L. Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line. J Biol Chem. 1986 Mar 5;261(7):3184–3192. [PubMed] [Google Scholar]
  44. Wagner J., Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994 Jul;67(1):447–456. doi: 10.1016/S0006-3495(94)80500-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang S. S., Alousi A. A., Thompson S. H. The lifetime of inositol 1,4,5-trisphosphate in single cells. J Gen Physiol. 1995 Jan;105(1):149–171. doi: 10.1085/jgp.105.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang S. S., Thompson S. H. Local positive feedback by calcium in the propagation of intracellular calcium waves. Biophys J. 1995 Nov;69(5):1683–1697. doi: 10.1016/S0006-3495(95)80086-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xu T., Naraghi M., Kang H., Neher E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J. 1997 Jul;73(1):532–545. doi: 10.1016/S0006-3495(97)78091-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Xu X., Zeng W., Diaz J., Muallem S. Spacial compartmentalization of Ca2+ signaling complexes in pancreatic acini. J Biol Chem. 1996 Oct 4;271(40):24684–24690. doi: 10.1074/jbc.271.40.24684. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES