Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1074–1084. doi: 10.1016/S0006-3495(00)76361-2

Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy.

Y Chen 1, J D Müller 1, S Y Tetin 1, J D Tyner 1, E Gratton 1
PMCID: PMC1301003  PMID: 10920037

Abstract

We examine the binding of fluorescent ligands to proteins by analyzing the fluctuation amplitude g(0) of fluorescence fluctuation experiments. The normalized variance g(0) depends on the molecular brightness and the concentration of each species in the sample. Thus a single g(0) measurement is not sufficient to resolve individual species. Titration of the ligand with protein establishes the link between molecular brightness and concentration by fitting g(0) to a binding model and allows the separation of species. We first apply g(0) analysis to binary dye mixtures with brightness ratios of 2 and 4 to demonstrate the feasibility of this technique. Next we consider the influence of binding on the fluctuation amplitude g(0). The dissociation coefficient, the molecular brightness ratio, and the stochiometry of binding strongly influence the fluctuation amplitude. We show that proteins with a single binding site can be clearly differentiated from proteins with two independent binding sites. The binding of fluorescein-labeled digoxigenin to a high-affinity anti-digoxin antibody was studied experimentally. A global analysis of the fluctuation amplitude and the fluorescence intensity not only recovered the dissociation coefficient and the number of binding sites, but also revealed the molecular heterogeneity of the hapten-antibody complex. Two species were used to model the molecular heterogeneity. We confirmed the molecular heterogeneity independently by fluorescence lifetime experiments, which gave fractional populations and molecular brightness values that were virtually identical to those of the g(0) analysis. The identification and characterization of molecular heterogeneity have far-reaching consequences for many biomolecular systems. We point out the important role fluctuation experiments may have in this area of research.

Full Text

The Full Text of this article is available as a PDF (131.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J. 1987 Jun;51(6):925–936. doi: 10.1016/S0006-3495(87)83420-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berland K. M., So P. T., Chen Y., Mantulin W. W., Gratton E. Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J. 1996 Jul;71(1):410–420. doi: 10.1016/S0006-3495(96)79242-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonnet G., Krichevsky O., Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8602–8606. doi: 10.1073/pnas.95.15.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gratton E., Jameson D. M., Hall R. D. Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng. 1984;13:105–124. doi: 10.1146/annurev.bb.13.060184.000541. [DOI] [PubMed] [Google Scholar]
  6. Haupts U., Maiti S., Schwille P., Webb W. W. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13573–13578. doi: 10.1073/pnas.95.23.13573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinjo M., Rigler R. Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 1995 May 25;23(10):1795–1799. doi: 10.1093/nar/23.10.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klingler J., Friedrich T. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy. Biophys J. 1997 Oct;73(4):2195–2200. doi: 10.1016/S0006-3495(97)78251-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lu H. P., Xun L., Xie X. S. Single-molecule enzymatic dynamics. Science. 1998 Dec 4;282(5395):1877–1882. doi: 10.1126/science.282.5395.1877. [DOI] [PubMed] [Google Scholar]
  10. Meseth U., Wohland T., Rigler R., Vogel H. Resolution of fluorescence correlation measurements. Biophys J. 1999 Mar;76(3):1619–1631. doi: 10.1016/S0006-3495(99)77321-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moerner W. E., Orrit M. Illuminating single molecules in condensed matter. Science. 1999 Mar 12;283(5408):1670–1676. doi: 10.1126/science.283.5408.1670. [DOI] [PubMed] [Google Scholar]
  12. Müller J. D., Chen Y., Gratton E. Resolving heterogeneity on the single molecular level with the photon-counting histogram. Biophys J. 2000 Jan;78(1):474–486. doi: 10.1016/S0006-3495(00)76610-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palmer A. G., 3rd, Thompson N. L. High-order fluorescence fluctuation analysis of model protein clusters. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6148–6152. doi: 10.1073/pnas.86.16.6148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Palmer A. G., 3rd, Thompson N. L. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys J. 1987 Aug;52(2):257–270. doi: 10.1016/S0006-3495(87)83213-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Qian H., Elson E. L. Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5479–5483. doi: 10.1073/pnas.87.14.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Qian H., Elson E. L. On the analysis of high order moments of fluorescence fluctuations. Biophys J. 1990 Feb;57(2):375–380. doi: 10.1016/S0006-3495(90)82539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rauer B., Neumann E., Widengren J., Rigler R. Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem. 1996 Jan 16;58(1-2):3–12. doi: 10.1016/0301-4622(95)00080-1. [DOI] [PubMed] [Google Scholar]
  18. Schüler J., Frank J., Trier U., Schäfer-Korting M., Saenger W. Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy. Biochemistry. 1999 Jun 29;38(26):8402–8408. doi: 10.1021/bi9819576. [DOI] [PubMed] [Google Scholar]
  19. Starchev K, Buffle J, Pérez E. Applications of Fluorescence Correlation Spectroscopy: Polydispersity Measurements. J Colloid Interface Sci. 1999 May 15;213(2):479–487. doi: 10.1006/jcis.1999.6128. [DOI] [PubMed] [Google Scholar]
  20. Van Craenenbroeck E., Engelborghs Y. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry. 1999 Apr 20;38(16):5082–5088. doi: 10.1021/bi9821925. [DOI] [PubMed] [Google Scholar]
  21. Vámosi G., Gohlke C., Clegg R. M. Fluorescence characteristics of 5-carboxytetramethylrhodamine linked covalently to the 5' end of oligonucleotides: multiple conformers of single-stranded and double-stranded dye-DNA complexes. Biophys J. 1996 Aug;71(2):972–994. doi: 10.1016/S0006-3495(96)79300-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Widengren J., Rigler R. Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell Mol Biol (Noisy-le-grand) 1998 Jul;44(5):857–879. [PubMed] [Google Scholar]
  23. Wohland T., Friedrich K., Hovius R., Vogel H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry. 1999 Jul 6;38(27):8671–8681. doi: 10.1021/bi990366s. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES