Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1119–1128. doi: 10.1016/S0006-3495(00)76365-X

High critical temperature above T(g) may contribute to the stability of biological systems.

J Buitink 1, I J van den Dries 1, F A Hoekstra 1, M Alberda 1, M A Hemminga 1
PMCID: PMC1301007  PMID: 10920041

Abstract

In this study, we characterized the molecular mobility around T(g) in sugars, poly-L-lysine and dry desiccation-tolerant biological systems, using ST-EPR, (1)H-NMR, and FTIR spectroscopy, to understand the nature and composition of biological glasses. Two distinct changes in the temperature dependence of the rotational correlation time (tau(R)) of the spin probe 3-carboxy-proxyl or the second moment (M(2)) were measured in sugars and poly-L-lysine. With heating, the first change was associated with the melting of the glassy state (T(g)). The second change (T(c)), at which tau(R) abruptly decreased over several orders of magnitude, was found to correspond with the so-called cross-over temperature, where the dynamics changed from solid-like to liquid-like. The temperature interval between T(g) and T(c) increased in the order of sucrose < trehalose < raffinose </= staychose < poly-L-lysine < biological tissues, from 17 to >50 degrees C, implying that the stability above T(g) improved in the same order. These differences in temperature-dependent mobilities above T(g) suggest that proteins rather than sugars play an important role in the intracellular glass formation. The exceptionally high T(c) of intracellular glasses is expected to provide excellent long-term stability to dry organisms, maintaining a slow molecular motion in the cytoplasm even at temperatures far above T(g).

Full Text

The Full Text of this article is available as a PDF (114.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buitink J., Hemminga M. A., Hoekstra F. A. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study. Biophys J. 1999 Jun;76(6):3315–3322. doi: 10.1016/S0006-3495(99)77484-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buitink J., Walters-Vertucci C., Hoekstra F. A., Leprince O. Calorimetric Properties of Dehydrating Pollen (Analysis of a Desiccation-Tolerant and an Intolerant Species). Plant Physiol. 1996 May;111(1):235–242. doi: 10.1104/pp.111.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buitink J, Claessens MM, Hemminga MA, Hoekstra FA. Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen . Plant Physiol. 1998 Oct;118(2):531–541. doi: 10.1104/pp.118.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caffrey M., Fonseca V., Leopold A. C. Lipid-sugar interactions : relevance to anhydrous biology. Plant Physiol. 1988 Mar;86(3):754–758. doi: 10.1104/pp.86.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang B. S., Beauvais R. M., Dong A., Carpenter J. F. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Arch Biochem Biophys. 1996 Jul 15;331(2):249–258. doi: 10.1006/abbi.1996.0305. [DOI] [PubMed] [Google Scholar]
  6. Crowe J. H., Carpenter J. F., Crowe L. M. The role of vitrification in anhydrobiosis. Annu Rev Physiol. 1998;60:73–103. doi: 10.1146/annurev.physiol.60.1.73. [DOI] [PubMed] [Google Scholar]
  7. Crowe J. H., Oliver A. E., Hoekstra F. A., Crowe L. M. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology. 1997 Aug;35(1):20–30. doi: 10.1006/cryo.1997.2020. [DOI] [PubMed] [Google Scholar]
  8. Crowe L. M., Reid D. S., Crowe J. H. Is trehalose special for preserving dry biomaterials? Biophys J. 1996 Oct;71(4):2087–2093. doi: 10.1016/S0006-3495(96)79407-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hancock B. C., Shamblin S. L., Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995 Jun;12(6):799–806. doi: 10.1023/a:1016292416526. [DOI] [PubMed] [Google Scholar]
  10. Hancock B. C., Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997 Jan;86(1):1–12. doi: 10.1021/js9601896. [DOI] [PubMed] [Google Scholar]
  11. Hirsh A. G. Vitrification in plants as a natural form of cryoprotection. Cryobiology. 1987 Jun;24(3):214–228. doi: 10.1016/0011-2240(87)90024-1. [DOI] [PubMed] [Google Scholar]
  12. Koster K. L. Glass formation and desiccation tolerance in seeds. Plant Physiol. 1991 May;96(1):302–304. doi: 10.1104/pp.96.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leprince O., Walters-Vertucci C. A Calorimetric Study of the Glass Transition Behaviors in Axes of Bean Seeds with Relevance to Storage Stability. Plant Physiol. 1995 Dec;109(4):1471–1481. doi: 10.1104/pp.109.4.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994 Dec;58(4):755–805. doi: 10.1128/mr.58.4.755-805.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prestrelski S. J., Tedeschi N., Arakawa T., Carpenter J. F. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J. 1993 Aug;65(2):661–671. doi: 10.1016/S0006-3495(93)81120-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Slade L., Levine H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr. 1991;30(2-3):115–360. doi: 10.1080/10408399109527543. [DOI] [PubMed] [Google Scholar]
  17. Sun W. Q., Davidson P. Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization. Biochim Biophys Acta. 1998 Sep 16;1425(1):235–244. doi: 10.1016/s0304-4165(98)00076-2. [DOI] [PubMed] [Google Scholar]
  18. Sun W. Q., Leopold A. C., Crowe L. M., Crowe J. H. Stability of dry liposomes in sugar glasses. Biophys J. 1996 Apr;70(4):1769–1776. doi: 10.1016/S0006-3495(96)79740-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williams R. J., Leopold A. C. The glassy state in corn embryos. Plant Physiol. 1989 Mar;89(3):977–981. doi: 10.1104/pp.89.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wolkers W. F., Oldenhof H., Alberda M., Hoekstra F. A. A Fourier transform infrared microspectroscopy study of sugar glasses: application to anhydrobiotic higher plant cells. Biochim Biophys Acta. 1998 Jan 8;1379(1):83–96. doi: 10.1016/s0304-4165(97)00085-8. [DOI] [PubMed] [Google Scholar]
  21. Wolkers W. F., van Kilsdonk M. G., Hoekstra F. A. Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates. Biochim Biophys Acta. 1998 Sep 16;1425(1):127–136. doi: 10.1016/s0304-4165(98)00059-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES