Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1379–1387. doi: 10.1016/S0006-3495(00)76390-9

Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities.

S Y Wang 1, C Nau 1, G K Wang 1
PMCID: PMC1301032  PMID: 10969000

Abstract

Batrachotoxin (BTX) alters the gating of voltage-gated Na(+) channels and causes these channels to open persistently, whereas local anesthetics (LAs) block Na(+) conductance. The BTX and LA receptors have been mapped to several common residues in D1-S6 and D4-S6 segments of the Na(+) channel alpha-subunit. We substituted individual residues with lysine in homologous segment D3-S6 of the rat muscle mu1 Na(+) channel from F1274 to N1281 to determine whether additional residues are involved in BTX and LA binding. Two mutant channels, mu1-S1276K and mu1-L1280K, when expressed in mammalian cells, become completely resistant to 5 microM BTX during repetitive pulses. The activation and/or fast inactivation gating of these mutants is substantially different from that of wild type. These mutants also display approximately 10-20-fold reduction in bupivacaine affinity toward their inactivated state but show only approximately twofold affinity changes toward their resting state. These results demonstrate that residues mu1-S1276 and mu1-L1280 in D3-S6 are critical for both BTX and LA binding interactions. We propose that LAs interact readily with these residues from D3-S6 along with those from D1-S6 and D4-S6 in close proximity when the Na(+) channel is in its inactivated state. Implications of this state-dependent binding model for the S6 alignment are discussed.

Full Text

The Full Text of this article is available as a PDF (112.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balser J. R., Nuss H. B., Chiamvimonvat N., Pérez-García M. T., Marban E., Tomaselli G. F. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol. 1996 Jul 15;494(Pt 2):431–442. doi: 10.1113/jphysiol.1996.sp021503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Whole-cell recording of calcium channel currents. Methods Enzymol. 1992;207:181–193. doi: 10.1016/0076-6879(92)07013-e. [DOI] [PubMed] [Google Scholar]
  3. Bennett E. S. Effects of channel cytoplasmic regions on the activation mechanisms of cardiac versus skeletal muscle Na(+) channels. Biophys J. 1999 Dec;77(6):2999–3009. doi: 10.1016/S0006-3495(99)77131-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown G. B. Batrachotoxin: a window on the allosteric nature of the voltage-sensitive sodium channel. Int Rev Neurobiol. 1988;29:77–116. doi: 10.1016/s0074-7742(08)60084-7. [DOI] [PubMed] [Google Scholar]
  5. Burke D., Henderson D. J., Simpson A. M., Faccenda K. A., Morrison L. M., McGrady E. M., McLeod G. A., Bannister J. Comparison of 0.25% S(-)-bupivacaine with 0.25% RS-bupivacaine for epidural analgesia in labour. Br J Anaesth. 1999 Nov;83(5):750–755. doi: 10.1093/bja/83.5.750. [DOI] [PubMed] [Google Scholar]
  6. Cannon S. C., Strittmatter S. M. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron. 1993 Feb;10(2):317–326. doi: 10.1016/0896-6273(93)90321-h. [DOI] [PubMed] [Google Scholar]
  7. Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
  8. Catterall W. A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
  9. Chandler W. K., Meves H. Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J Physiol. 1970 Dec;211(3):707–728. doi: 10.1113/jphysiol.1970.sp009300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Creveling C. R., McNeal E. T., Daly J. W., Brown G. B. Batrachotoxin-induced depolarization and [3H]batrachotoxinin-a 20 alpha-benzoate binding in a vesicular preparation from guinea pig cerebral cortex. Mol Pharmacol. 1983 Mar;23(2):350–358. [PubMed] [Google Scholar]
  11. Daly J. W., Myers C. W., Warnick J. E., Albuquerque E. X. Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates). Science. 1980 Jun 20;208(4450):1383–1385. doi: 10.1126/science.6246586. [DOI] [PubMed] [Google Scholar]
  12. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  13. Fozzard H. A., Hanck D. A. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev. 1996 Jul;76(3):887–926. doi: 10.1152/physrev.1996.76.3.887. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hanck D. A., Makielski J. C., Sheets M. F. Kinetic effects of quaternary lidocaine block of cardiac sodium channels: a gating current study. J Gen Physiol. 1994 Jan;103(1):19–43. doi: 10.1085/jgp.103.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hockerman G. H., Peterson B. Z., Johnson B. D., Catterall W. A. Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol. 1997;37:361–396. doi: 10.1146/annurev.pharmtox.37.1.361. [DOI] [PubMed] [Google Scholar]
  18. Holmgren M., Shin K. S., Yellen G. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron. 1998 Sep;21(3):617–621. doi: 10.1016/s0896-6273(00)80571-1. [DOI] [PubMed] [Google Scholar]
  19. Linford N. J., Cantrell A. R., Qu Y., Scheuer T., Catterall W. A. Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13947–13952. doi: 10.1073/pnas.95.23.13947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McPhee J. C., Ragsdale D. S., Scheuer T., Catterall W. A. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. J Biol Chem. 1998 Jan 9;273(2):1121–1129. doi: 10.1074/jbc.273.2.1121. [DOI] [PubMed] [Google Scholar]
  21. Nau C., Wang S. Y., Strichartz G. R., Wang G. K. Point mutations at N434 in D1-S6 of mu1 Na(+) channels modulate binding affinity and stereoselectivity of local anesthetic enantiomers. Mol Pharmacol. 1999 Aug;56(2):404–413. doi: 10.1124/mol.56.2.404. [DOI] [PubMed] [Google Scholar]
  22. Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
  23. Postma S. W., Catterall W. A. Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by local anesthetics. Mol Pharmacol. 1984 Mar;25(2):219–227. [PubMed] [Google Scholar]
  24. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  25. Smith M. R., Goldin A. L. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J. 1997 Oct;73(4):1885–1895. doi: 10.1016/S0006-3495(97)78219-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Strichartz G., Rando T., Wang G. K. An integrated view of the molecular toxinology of sodium channel gating in excitable cells. Annu Rev Neurosci. 1987;10:237–267. doi: 10.1146/annurev.ne.10.030187.001321. [DOI] [PubMed] [Google Scholar]
  27. Sunami A., Dudley S. C., Jr, Fozzard H. A. Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14126–14131. doi: 10.1073/pnas.94.25.14126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanguy J., Yeh J. Z. BTX modification of Na channels in squid axons. I. State dependence of BTX action. J Gen Physiol. 1991 Mar;97(3):499–519. doi: 10.1085/jgp.97.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trainer V. L., Brown G. B., Catterall W. A. Site of covalent labeling by a photoreactive batrachotoxin derivative near transmembrane segment IS6 of the sodium channel alpha subunit. J Biol Chem. 1996 May 10;271(19):11261–11267. doi: 10.1074/jbc.271.19.11261. [DOI] [PubMed] [Google Scholar]
  30. Ukomadu C., Zhou J., Sigworth F. J., Agnew W. S. muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron. 1992 Apr;8(4):663–676. doi: 10.1016/0896-6273(92)90088-u. [DOI] [PubMed] [Google Scholar]
  31. Vedantham V., Cannon S. C. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels. J Gen Physiol. 1999 Jan;113(1):7–16. doi: 10.1085/jgp.113.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vilin Y. Y., Makita N., George A. L., Jr, Ruben P. C. Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys J. 1999 Sep;77(3):1384–1393. doi: 10.1016/S0006-3495(99)76987-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang G. K., Brodwick M. S., Eaton D. C., Strichartz G. R. Inhibition of sodium currents by local anesthetics in chloramine-T-treated squid axons. The role of channel activation. J Gen Physiol. 1987 Apr;89(4):645–667. doi: 10.1085/jgp.89.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang G. K., Quan C., Wang S. Y. Local anesthetic block of batrachotoxin-resistant muscle Na+ channels. Mol Pharmacol. 1998 Aug;54(2):389–396. doi: 10.1124/mol.54.2.389. [DOI] [PubMed] [Google Scholar]
  35. Wang S. Y., Wang G. K. Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys J. 1999 Jun;76(6):3141–3149. doi: 10.1016/S0006-3495(99)77465-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang S. Y., Wang G. K. Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2653–2658. doi: 10.1073/pnas.95.5.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
  39. del Camino D., Holmgren M., Liu Y., Yellen G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature. 2000 Jan 20;403(6767):321–325. doi: 10.1038/35002099. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES