Abstract
A glutamic acid was buried in the hydrophobic core of staphylococcal nuclease by replacement of Val-66. Its pK(a) was measured with equilibrium thermodynamic methods. It was 4.3 units higher than the pK(a) of Glu in water. This increase was comparable to the DeltapK(a) of 4.9 units measured previously for a lysine buried at the same location. According to the Born formalism these DeltapK(a) are energetically equivalent to the transfer of a charged group from water to a medium of dielectric constant of 12. In contrast, the static dielectric constants of dry protein powders range from 2 to 4. In the crystallographic structure of the V66E mutant, a chain of water molecules was seen that hydrates the buried Glu-66 and links it with bulk solvent. The buried water molecules have never previously been detected in >20 structures of nuclease. The structure and the measured energetics constitute compelling and unprecedented experimental evidence that solvent penetration can contribute significantly to the high apparent polarizability inside proteins. To improve structure-based calculations of electrostatic effects with continuum methods, it will be necessary to learn to account quantitatively for the contributions by solvent penetration to dielectric effects in the protein interior.
Full Text
The Full Text of this article is available as a PDF (260.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
- Bone S., Pethig R. Dielectric studies of protein hydration and hydration-induced flexibility. J Mol Biol. 1985 Jan 20;181(2):323–326. doi: 10.1016/0022-2836(85)90096-8. [DOI] [PubMed] [Google Scholar]
- Bone S., Pethig R. Dielectric studies of the binding of water to lysozyme. J Mol Biol. 1982 May 25;157(3):571–575. doi: 10.1016/0022-2836(82)90477-6. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Buckle A. M., Cramer P., Fersht A. R. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry. 1996 Apr 9;35(14):4298–4305. doi: 10.1021/bi9524676. [DOI] [PubMed] [Google Scholar]
- Churg A. K., Warshel A. Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins. Biochemistry. 1986 Apr 8;25(7):1675–1681. doi: 10.1021/bi00355a035. [DOI] [PubMed] [Google Scholar]
- Collins K. D. Charge density-dependent strength of hydration and biological structure. Biophys J. 1997 Jan;72(1):65–76. doi: 10.1016/S0006-3495(97)78647-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cruzan J. D., Braly L. B., Liu K., Brown M. G., Loeser J. G., Saykally R. J. Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of the water tetramer. Science. 1996 Jan 5;271(5245):59–62. doi: 10.1126/science.271.5245.59. [DOI] [PubMed] [Google Scholar]
- Dao-pin S., Anderson D. E., Baase W. A., Dahlquist F. W., Matthews B. W. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry. 1991 Dec 10;30(49):11521–11529. doi: 10.1021/bi00113a006. [DOI] [PubMed] [Google Scholar]
- Deisenhofer J., Michel H. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J. 1989 Aug;8(8):2149–2170. doi: 10.1002/j.1460-2075.1989.tb08338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denisov V. P., Halle B., Peters J., Hörlein H. D. Residence times of the buried water molecules in bovine pancreatic trypsin inhibitor and its G36S mutant. Biochemistry. 1995 Jul 18;34(28):9046–9051. doi: 10.1021/bi00028a013. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Peters J., Hörlein H. D., Halle B. Using buried water molecules to explore the energy landscape of proteins. Nat Struct Biol. 1996 Jun;3(6):505–509. doi: 10.1038/nsb0696-505. [DOI] [PubMed] [Google Scholar]
- Ermler U., Fritzsch G., Buchanan S. K., Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure. 1994 Oct 15;2(10):925–936. doi: 10.1016/s0969-2126(94)00094-8. [DOI] [PubMed] [Google Scholar]
- Ernst J. A., Clubb R. T., Zhou H. X., Gronenborn A. M., Clore G. M. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science. 1995 Mar 24;267(5205):1813–1817. doi: 10.1126/science.7892604. [DOI] [PubMed] [Google Scholar]
- Feher V. A., Baldwin E. P., Dahlquist F. W. Access of ligands to cavities within the core of a protein is rapid. Nat Struct Biol. 1996 Jun;3(6):516–521. doi: 10.1038/nsb0696-516. [DOI] [PubMed] [Google Scholar]
- García-Moreno B., Dwyer J. J., Gittis A. G., Lattman E. E., Spencer D. S., Stites W. E. Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophys Chem. 1997 Feb 28;64(1-3):211–224. doi: 10.1016/s0301-4622(96)02238-7. [DOI] [PubMed] [Google Scholar]
- García A. E., Hummer G. Water penetration and escape in proteins. Proteins. 2000 Feb 15;38(3):261–272. [PubMed] [Google Scholar]
- Gibas C. J., Subramaniam S. Explicit solvent models in protein pKa calculations. Biophys J. 1996 Jul;71(1):138–147. doi: 10.1016/S0006-3495(96)79209-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giletto A., Pace C. N. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1. Biochemistry. 1999 Oct 5;38(40):13379–13384. doi: 10.1021/bi991422s. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Honig B. H. The dielectric constant of a folded protein. Biopolymers. 1986 Nov;25(11):2097–2119. doi: 10.1002/bip.360251106. [DOI] [PubMed] [Google Scholar]
- Harvey S. C., Hoekstra P. Dielectric relaxation spectra of water adsorbed on lysozyme. J Phys Chem. 1972 Oct 12;76(21):2987–2994. doi: 10.1021/j100665a011. [DOI] [PubMed] [Google Scholar]
- Havranek J. J., Harbury P. B. Tanford-Kirkwood electrostatics for protein modeling. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11145–11150. doi: 10.1073/pnas.96.20.11145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
- Löffler G., Schreiber H., Steinhauser O. Calculation of the dielectric properties of a protein and its solvent: theory and a case study. J Mol Biol. 1997 Jul 18;270(3):520–534. doi: 10.1006/jmbi.1997.1130. [DOI] [PubMed] [Google Scholar]
- Martinez S. E., Huang D., Ponomarev M., Cramer W. A., Smith J. L. The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci. 1996 Jun;5(6):1081–1092. doi: 10.1002/pro.5560050610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer E. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci. 1992 Dec;1(12):1543–1562. doi: 10.1002/pro.5560011203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oprea T. I., Hummer G., Garcia A. E. Identification of a functional water channel in cytochrome P450 enzymes. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2133–2138. doi: 10.1073/pnas.94.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ormö M., Cubitt A. B., Kallio K., Gross L. A., Tsien R. Y., Remington S. J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392–1395. doi: 10.1126/science.273.5280.1392. [DOI] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Halle B., Frey U. NMR identification of hydrophobic cavities with low water occupancies in protein structures using small gas molecules. Nat Struct Biol. 1997 May;4(5):396–404. doi: 10.1038/nsb0597-396. [DOI] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Wüthrich K. Protein hydration in aqueous solution. Science. 1991 Nov 15;254(5034):974–980. doi: 10.1126/science.1948083. [DOI] [PubMed] [Google Scholar]
- Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
- Roe S. M., Teeter M. M. Patterns for prediction of hydration around polar residues in proteins. J Mol Biol. 1993 Jan 20;229(2):419–427. doi: 10.1006/jmbi.1993.1043. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Young W. B., Gierasch L. M. Interior turns in globular proteins. Nature. 1983 Aug 18;304(5927):654–657. doi: 10.1038/304654a0. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Shih P., Holland D. R., Kirsch J. F. Thermal stability determinants of chicken egg-white lysozyme core mutants: hydrophobicity, packing volume, and conserved buried water molecules. Protein Sci. 1995 Oct;4(10):2050–2062. doi: 10.1002/pro.5560041010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins. 1986 Sep;1(1):81–89. doi: 10.1002/prot.340010113. [DOI] [PubMed] [Google Scholar]
- Simonson T., Perahia D. Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1082–1086. doi: 10.1073/pnas.92.4.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreenivasan U., Axelsen P. H. Buried water in homologous serine proteases. Biochemistry. 1992 Dec 29;31(51):12785–12791. doi: 10.1021/bi00166a011. [DOI] [PubMed] [Google Scholar]
- Stites W. E., Byrne M. P., Aviv J., Kaplan M., Curtis P. M. Instrumentation for automated determination of protein stability. Anal Biochem. 1995 May 1;227(1):112–122. doi: 10.1006/abio.1995.1259. [DOI] [PubMed] [Google Scholar]
- Stites W. E., Gittis A. G., Lattman E. E., Shortle D. In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J Mol Biol. 1991 Sep 5;221(1):7–14. doi: 10.1016/0022-2836(91)80195-z. [DOI] [PubMed] [Google Scholar]
- Teeter M. M. Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6014–6018. doi: 10.1073/pnas.81.19.6014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thanki N., Thornton J. M., Goodfellow J. M. Distributions of water around amino acid residues in proteins. J Mol Biol. 1988 Aug 5;202(3):637–657. doi: 10.1016/0022-2836(88)90292-6. [DOI] [PubMed] [Google Scholar]
- Tüchsen E., Hayes J. M., Ramaprasad S., Copie V., Woodward C. Solvent exchange of buried water and hydrogen exchange of peptide NH groups hydrogen bonded to buried waters in bovine pancreatic trypsin inhibitor. Biochemistry. 1987 Aug 11;26(16):5163–5172. doi: 10.1021/bi00390a040. [DOI] [PubMed] [Google Scholar]
- Warshel A., Aqvist J., Creighton S. Enzymes work by solvation substitution rather than by desolvation. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5820–5824. doi: 10.1073/pnas.86.15.5820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A., Aqvist J. Electrostatic energy and macromolecular function. Annu Rev Biophys Biophys Chem. 1991;20:267–298. doi: 10.1146/annurev.bb.20.060191.001411. [DOI] [PubMed] [Google Scholar]
- Warshel A. Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry. 1981 May 26;20(11):3167–3177. doi: 10.1021/bi00514a028. [DOI] [PubMed] [Google Scholar]
- Warshel A. Energetics of enzyme catalysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5250–5254. doi: 10.1073/pnas.75.11.5250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A., Russell S. T., Churg A. K. Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4785–4789. doi: 10.1073/pnas.81.15.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M. A., Goodfellow J. M., Thornton J. M. Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimley W. C., Creamer T. P., White S. H. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry. 1996 Apr 23;35(16):5109–5124. doi: 10.1021/bi9600153. [DOI] [PubMed] [Google Scholar]
- Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]