Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1718–1730. doi: 10.1016/S0006-3495(00)76424-1

Atomic detail peptide-membrane interactions: molecular dynamics simulation of gramicidin S in a DMPC bilayer.

D Mihailescu 1, J C Smith 1
PMCID: PMC1301066  PMID: 11023880

Abstract

Molecular dynamics simulations have been performed of the sequence-symmetric cyclic decapeptide antibiotic gramicidin S (GS), in interaction with a hydrated dimyristoylphosphatidylcholine (DMPC) bilayer, and the results compared with a "control" simulation of the system in the absence of GS. Following experimental evidence, the GS was initially set in a single antiparallel beta-sheet conformation with two Type II' beta-turns in an amphiphilic interaction with the membrane. This conformation and position remained in the 6.5 ns simulation. Main-chain dihedrals are on average approximately 26 degrees from those determined by NMR experiment on GS in dimethylsulfoxide (DMSO) solution. Sequence-symmetric main-chain and side-chain dihedral angle pairs converge to within approximately 5 degrees and approximately 10 degrees, respectively. The area per lipid, lipid tail order parameters, and quadrupole spin-lattice relaxation times of the control simulation are mostly in good agreement with corresponding experiments. The GS has little effect on the membrane dipole potential or water permeability. However, it is found to have a disordering effect (in agreement with experiment) and a fluidifying effect on lipids directly interacting with it, and an ordering effect on those not directly interacting.

Full Text

The Full Text of this article is available as a PDF (479.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROCKMAN H. Dipole potential of lipid membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):57–79. doi: 10.1016/0009-3084(94)90174-0. [DOI] [PubMed] [Google Scholar]
  2. Balasubramanian D. The conformation of Gramicidin S in solution. J Am Chem Soc. 1967 Oct 11;89(21):5445–5449. doi: 10.1021/ja00997a027. [DOI] [PubMed] [Google Scholar]
  3. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
  4. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  6. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. Biophys J. 1999 Apr;76(4):1929–1938. doi: 10.1016/S0006-3495(99)77352-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cseh R., Benz R. Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J. 1999 Sep;77(3):1477–1488. doi: 10.1016/S0006-3495(99)76995-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Datema K. P., Pauls K. P., Bloom M. Deuterium nuclear magnetic resonance investigation of the exchangeable sites on gramicidin A and gramicidin S in multilamellar vesicles of dipalmitoylphosphatidylcholine. Biochemistry. 1986 Jul 1;25(13):3796–3803. doi: 10.1021/bi00361a010. [DOI] [PubMed] [Google Scholar]
  9. Douliez J. P., Léonard A., Dufourc E. J. Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J. 1995 May;68(5):1727–1739. doi: 10.1016/S0006-3495(95)80350-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Essmann U., Berkowitz M. L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys J. 1999 Apr;76(4):2081–2089. doi: 10.1016/S0006-3495(99)77364-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feller S. E., Pastor R. W. On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys J. 1996 Sep;71(3):1350–1355. doi: 10.1016/S0006-3495(96)79337-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halladay H. N., Stark R. E., Ali S., Bittman R. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine. Biophys J. 1990 Dec;58(6):1449–1461. doi: 10.1016/S0006-3495(90)82490-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higashijima T., Miyazawa T., Kawai M., Nagai U. Gramicidin S analogs with a D-Ala, Gly, or L-Ala residue in place of the D-Phe residue: molecular conformations and interactions with phospholipid membrane. Biopolymers. 1986 Dec;25(12):2295–2307. doi: 10.1002/bip.360251207. [DOI] [PubMed] [Google Scholar]
  15. Hubbell W. L., McConnell H. M. Spin-label studies of the excitable membranes of nerve and muscle. Proc Natl Acad Sci U S A. 1968 Sep;61(1):12–16. doi: 10.1073/pnas.61.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones C. R., Sikakana C. T., Hehir S., Kuo M. C., Gibbons W. A. The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S. Biophys J. 1978 Dec;24(3):815–832. doi: 10.1016/S0006-3495(78)85422-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jähnig F. What is the surface tension of a lipid bilayer membrane? Biophys J. 1996 Sep;71(3):1348–1349. doi: 10.1016/S0006-3495(96)79336-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katsu T., Kobayashi H., Hirota T., Fujita Y., Sato K., Nagai U. Structure-activity relationship of gramicidin S analogues on membrane permeability. Biochim Biophys Acta. 1987 May 29;899(2):159–170. doi: 10.1016/0005-2736(87)90396-8. [DOI] [PubMed] [Google Scholar]
  19. Katsu T., Kuroko M., Morikawa T., Sanchika K., Fujita Y., Yamamura H., Uda M. Mechanism of membrane damage induced by the amphipathic peptides gramicidin S and melittin. Biochim Biophys Acta. 1989 Aug 7;983(2):135–141. doi: 10.1016/0005-2736(89)90226-5. [DOI] [PubMed] [Google Scholar]
  20. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  22. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pache W., Chapman D., Hillaby R. Interaction of antibiotics with membranes: polymyxin B and gramicidin S. Biochim Biophys Acta. 1972 Jan 17;255(1):358–364. doi: 10.1016/0005-2736(72)90034-x. [DOI] [PubMed] [Google Scholar]
  24. Petrache H. I., Tristram-Nagle S., Nagle J. F. Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids. 1998 Sep;95(1):83–94. doi: 10.1016/s0009-3084(98)00068-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Portlock S. H., Clague M. J., Cherry R. J. Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochim Biophys Acta. 1990 Nov 30;1030(1):1–10. doi: 10.1016/0005-2736(90)90231-c. [DOI] [PubMed] [Google Scholar]
  26. Prenner E. J., Lewis R. N., Neuman K. C., Gruner S. M., Kondejewski L. H., Hodges R. S., McElhaney R. N. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity. Biochemistry. 1997 Jun 24;36(25):7906–7916. doi: 10.1021/bi962785k. [DOI] [PubMed] [Google Scholar]
  27. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  28. Shapovalov V. L., Kotova E. A., Rokitskaya T. I., Antonenko Y. N. Effect of gramicidin A on the dipole potential of phospholipid membranes. Biophys J. 1999 Jul;77(1):299–305. doi: 10.1016/S0006-3495(99)76890-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stern A., Gibbons W. A., Craig L. C. A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1968 Oct;61(2):734–741. doi: 10.1073/pnas.61.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  31. Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
  32. Volke F., Pampel A. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes. Biophys J. 1995 May;68(5):1960–1965. doi: 10.1016/S0006-3495(95)80373-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Woolf T. B. Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis. Biophys J. 1998 Jan;74(1):115–131. doi: 10.1016/S0006-3495(98)77773-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woolf T. B., Roux B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11631–11635. doi: 10.1073/pnas.91.24.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  36. Wu E. S., Jacobson K., Szoka F., Portis A., Jr Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry. 1978 Dec 12;17(25):5543–5550. doi: 10.1021/bi00618a033. [DOI] [PubMed] [Google Scholar]
  37. Xu Y., Sugár I. P., Krishna N. R. A variable target intensity-restrained global optimization (VARTIGO) procedure for determining three-dimensional structures of polypeptides from NOESY data: application to gramicidin-S. J Biomol NMR. 1995 Jan;5(1):37–48. doi: 10.1007/BF00227468. [DOI] [PubMed] [Google Scholar]
  38. Zidovetzki R., Banerjee U., Harrington D. W., Chan S. I. NMR study of the interactions of polymyxin B, gramicidin S, and valinomycin with dimyristoyllecithin bilayers. Biochemistry. 1988 Jul 26;27(15):5686–5692. doi: 10.1021/bi00415a044. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES