Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1833–1849. doi: 10.1016/S0006-3495(00)76433-2

Dynamics of the mitochondrial reticulum in live cells using Fourier imaging correlation spectroscopy and digital video microscopy.

D Margineantu 1, R A Capaldi 1, A H Marcus 1
PMCID: PMC1301075  PMID: 11023889

Abstract

We report detailed studies of the dynamics of the mitochondrial reticulum in live cells using two independent experimental techniques: Fourier imaging correlation spectroscopy and digital video fluorescence microscopy. When both methods are used to study the same system, it is possible to directly compare measurements of preaveraged statistical dynamical quantities with their microscopic counterparts. This approach allows the underlying mechanism of the observed rates to be determined. Our results indicate that the dynamics of the reticulum structure is composed of two independent contributions, each important on very different time and length scales. During short time intervals (1-15 sec), local regions of the reticulum primarily undergo constrained thermally activated motion. During long time intervals (>15 sec), local regions of the reticulum undergo long-range "jump" motions that are associated with the action of cytoskeletal filaments. Although the frequency of the jumps depend on the physiological state of the cells, the average jump distance ( approximately 0.8 microm) is unaffected by metabolic activity. During short time intervals, the dynamics appear to be spatially heterogeneous, whereas the cumulative effect of the infrequent jumps leads to the appearance of diffusive motion in the limit of long time intervals.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amchenkova A. A., Bakeeva L. E., Chentsov Y. S., Skulachev V. P., Zorov D. B. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol. 1988 Aug;107(2):481–495. doi: 10.1083/jcb.107.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bereiter-Hahn J. Behavior of mitochondria in the living cell. Int Rev Cytol. 1990;122:1–63. doi: 10.1016/s0074-7696(08)61205-x. [DOI] [PubMed] [Google Scholar]
  3. Bereiter-Hahn J., Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994 Feb 15;27(3):198–219. doi: 10.1002/jemt.1070270303. [DOI] [PubMed] [Google Scholar]
  4. Chazotte B., Hackenbrock C. R. Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density. J Biol Chem. 1991 Mar 25;266(9):5973–5979. [PubMed] [Google Scholar]
  5. Dall'Asta V., Gatti R., Orlandini G., Rossi P. A., Rotoli B. M., Sala R., Bussolati O., Gazzola G. C. Membrane potential changes visualized in complete growth media through confocal laser scanning microscopy of bis-oxonol-loaded cells. Exp Cell Res. 1997 Mar 15;231(2):260–268. doi: 10.1006/excr.1996.3469. [DOI] [PubMed] [Google Scholar]
  6. Davoust J., Devaux P. F., Leger L. Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules. EMBO J. 1982;1(10):1233–1238. doi: 10.1002/j.1460-2075.1982.tb00018.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fall C. P., Bennett J. P., Jr Visualization of cyclosporin A and Ca2+-sensitive cyclical mitochondrial depolarizations in cell culture. Biochim Biophys Acta. 1999 Jan 27;1410(1):77–84. doi: 10.1016/s0005-2728(98)00177-7. [DOI] [PubMed] [Google Scholar]
  8. Gilkerson R. W., Margineantu D. H., Capaldi R. A., Selker J. M. Mitochondrial DNA depletion causes morphological changes in the mitochondrial reticulum of cultured human cells. FEBS Lett. 2000 May 26;474(1):1–4. doi: 10.1016/s0014-5793(00)01527-1. [DOI] [PubMed] [Google Scholar]
  9. Han J., Herzfeld J. Macromolecular diffusion in crowded solutions. Biophys J. 1993 Sep;65(3):1155–1161. doi: 10.1016/S0006-3495(93)81145-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kettling U., Koltermann A., Schwille P., Eigen M. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1416–1420. doi: 10.1073/pnas.95.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luby-Phelps K. Physical properties of cytoplasm. Curr Opin Cell Biol. 1994 Feb;6(1):3–9. doi: 10.1016/0955-0674(94)90109-0. [DOI] [PubMed] [Google Scholar]
  12. Madden T. L., Herzfeld J. Crowding-induced organization of cytoskeletal elements: I. Spontaneous demixing of cytosolic proteins and model filaments to form filament bundles. Biophys J. 1993 Sep;65(3):1147–1154. doi: 10.1016/S0006-3495(93)81144-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marcus A. H., Schofield J., Rice S. A. Experimental observations of non-Gaussian behavior and stringlike cooperative dynamics in concentrated quasi-two-dimensional colloidal liquids. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):5725–5736. doi: 10.1103/physreve.60.5725. [DOI] [PubMed] [Google Scholar]
  14. Marcus AH, Lin B, Rice SA. Self-diffusion in dilute quasi-two-dimensional hard sphere suspensions: Evanescent wave light scattering and video microscopy studies. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Feb;53(2):1765–1776. doi: 10.1103/physreve.53.1765. [DOI] [PubMed] [Google Scholar]
  15. Mignotte B., Vayssiere J. L. Mitochondria and apoptosis. Eur J Biochem. 1998 Feb 15;252(1):1–15. doi: 10.1046/j.1432-1327.1998.2520001.x. [DOI] [PubMed] [Google Scholar]
  16. Nunnari J., Marshall W. F., Straight A., Murray A., Sedat J. W., Walter P. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell. 1997 Jul;8(7):1233–1242. doi: 10.1091/mbc.8.7.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Partikian A., Olveczky B., Swaminathan R., Li Y., Verkman A. S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol. 1998 Feb 23;140(4):821–829. doi: 10.1083/jcb.140.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reers M., Smiley S. T., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 1995;260:406–417. doi: 10.1016/0076-6879(95)60154-6. [DOI] [PubMed] [Google Scholar]
  19. Reers M., Smith T. W., Chen L. B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991 May 7;30(18):4480–4486. doi: 10.1021/bi00232a015. [DOI] [PubMed] [Google Scholar]
  20. Rizzuto R., Carrington W., Tuft R. A. Digital imaging microscopy of living cells. Trends Cell Biol. 1998 Jul;8(7):288–292. doi: 10.1016/s0962-8924(98)01301-4. [DOI] [PubMed] [Google Scholar]
  21. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
  22. Rojo G., Chamorro M., Salas M. L., Viñuela E., Cuezva J. M., Salas J. Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J Virol. 1998 Sep;72(9):7583–7588. doi: 10.1128/jvi.72.9.7583-7588.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Romashko D. N., Marban E., O'Rourke B. Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1618–1623. doi: 10.1073/pnas.95.4.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salmeen I., Zacmanidis P., Jesion G., Feldkamp L. A. Motion of mitochondria in cultured cells quantified by analysis of digitized images. Biophys J. 1985 Nov;48(5):681–686. doi: 10.1016/S0006-3495(85)83825-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salvioli S., Ardizzoni A., Franceschi C., Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997 Jul 7;411(1):77–82. doi: 10.1016/s0014-5793(97)00669-8. [DOI] [PubMed] [Google Scholar]
  26. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  27. Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A., Hirokawa N. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998 Jun 26;93(7):1147–1158. doi: 10.1016/s0092-8674(00)81459-2. [DOI] [PubMed] [Google Scholar]
  28. Xie X. S., Trautman J. K. Optical studies of single molecules at room temperature. Annu Rev Phys Chem. 1998;49:441–480. doi: 10.1146/annurev.physchem.49.1.441. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES