Abstract
The adsorption of a membrane-impermeable photosensitizer to only one membrane leaflet is found to trigger a localized photodynamic reaction; i.e., the amount of carbonyl cyanide m-chlorophenylhydrazone (CCCP) molecules damaged in the leaflet facing the photosensitizer is roughly identical to the total amount of CCCP inactivated. Whereas the latter quantity is assessed from the drop in membrane conductivity G, the former is evaluated from the photopotential varphi that is proportional to the interfacial concentration difference of the uncoupler. Localized photodestruction is encountered by CCCP diffusion to the site of photodamage. A simple model that accounts for both photoinhibition and diffusion predicts the dependence of the photopotential on light intensity, buffer capacity, and pH of the medium. It is concluded that only a limited amount of the reactive oxygen species responsible for CCCP photodamage diffuses across the membrane. If the concentration of reactive oxygen species is decreased by addition of NaN(3) or by substituting aqueous oxygen for argon, phi is inhibited. If, in contrast, their life time is increased by substitution of H(2)O for D(2)O, phi increases.
Full Text
The Full Text of this article is available as a PDF (106.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad N., Feyes D. K., Agarwal R., Mukhtar H. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6977–6982. doi: 10.1073/pnas.95.12.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antonenko YuN, Yaguzhinsky L. S. Generation of potential in lipid bilayer membranes as a result of proton-transfer reactions in the unstirred layers. J Bioenerg Biomembr. 1982 Dec;14(5-6):457–465. doi: 10.1007/BF00743071. [DOI] [PubMed] [Google Scholar]
- Antonenko Y. N., Denisov G. A., Pohl P. Weak acid transport across bilayer lipid membrane in the presence of buffers. Theoretical and experimental pH profiles in the unstirred layers. Biophys J. 1993 Jun;64(6):1701–1710. doi: 10.1016/S0006-3495(93)81542-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antonenko Y. N., Pohl P., Denisov G. A. Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes. Biophys J. 1997 May;72(5):2187–2195. doi: 10.1016/S0006-3495(97)78862-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachor R., Shea C. R., Gillies R., Hasan T. Photosensitized destruction of human bladder carcinoma cells treated with chlorin e6-conjugated microspheres. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1580–1584. doi: 10.1073/pnas.88.4.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachowski G. J., Ben-Hur E., Girotti A. W. Phthalocyanine-sensitized lipid peroxidation in cell membranes: use of cholesterol and azide as probes of primary photochemistry. J Photochem Photobiol B. 1991 Jun;9(3-4):307–321. doi: 10.1016/1011-1344(91)80168-h. [DOI] [PubMed] [Google Scholar]
- Borisova M. P., Ermishkin L. N., Liberman E. A., Silberstein A. Y., Trofimov E. M. Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole. J Membr Biol. 1974;18(3-4):243–261. doi: 10.1007/BF01870115. [DOI] [PubMed] [Google Scholar]
- Canti G., Nicolin A., Cubeddu R., Taroni P., Bandieramonte G., Valentini G. Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors. Cancer Lett. 1998 Mar 13;125(1-2):39–44. doi: 10.1016/s0304-3835(97)00502-8. [DOI] [PubMed] [Google Scholar]
- Chou P. T., Khan A. U. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C. Biochem Biophys Res Commun. 1983 Sep 30;115(3):932–937. doi: 10.1016/s0006-291x(83)80024-2. [DOI] [PubMed] [Google Scholar]
- Diamond I., Granelli S. G., McDonagh A. F., Nielsen S., Wilson C. B., Jaenicke R. Photodynamic therapy of malignant tumours. Lancet. 1972 Dec 2;2(7788):1175–1177. doi: 10.1016/s0140-6736(72)92596-2. [DOI] [PubMed] [Google Scholar]
- Ehrenberg B., Anderson J. L., Foote C. S. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem Photobiol. 1998 Aug;68(2):135–140. [PubMed] [Google Scholar]
- Girotti A. W. Photodynamic lipid peroxidation in biological systems. Photochem Photobiol. 1990 Apr;51(4):497–509. doi: 10.1111/j.1751-1097.1990.tb01744.x. [DOI] [PubMed] [Google Scholar]
- Gutknecht J., Tosteson D. C. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science. 1973 Dec 21;182(4118):1258–1261. doi: 10.1126/science.182.4118.1258. [DOI] [PubMed] [Google Scholar]
- Haylett A. K., McNair F. I., McGarvey D., Dodd N. J., Forbes E., Truscott T. G., Moore J. V. Singlet oxygen and superoxide characteristics of a series of novel asymmetric photosensitizers. Cancer Lett. 1997 Jan 30;112(2):233–238. doi: 10.1016/s0304-3835(96)04577-6. [DOI] [PubMed] [Google Scholar]
- He J., Whitacre C. M., Xue L. Y., Berger N. A., Oleinick N. L. Protease activation and cleavage of poly(ADP-ribose) polymerase: an integral part of apoptosis in response to photodynamic treatment. Cancer Res. 1998 Mar 1;58(5):940–946. [PubMed] [Google Scholar]
- Hoebeke M., Schuitmaker H. J., Jannink L. E., Dubbelman T. M., Jakobs A., Van de Vorst A. Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a. Photochem Photobiol. 1997 Oct;66(4):502–508. doi: 10.1111/j.1751-1097.1997.tb03180.x. [DOI] [PubMed] [Google Scholar]
- Kasianowicz J., Benz R., McLaughlin S. The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J Membr Biol. 1984;82(2):179–190. doi: 10.1007/BF01868942. [DOI] [PubMed] [Google Scholar]
- Kochevar I. E., Bouvier J., Lynch M., Lin C. W. Influence of dye and protein location on photosensitization of the plasma membrane. Biochim Biophys Acta. 1994 Dec 30;1196(2):172–180. doi: 10.1016/0005-2736(94)00236-3. [DOI] [PubMed] [Google Scholar]
- Krasnovsky A. A., Jr Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr Cell Biol. 1998;12(5):665–690. [PubMed] [Google Scholar]
- Kunz L., Stark G. Photofrin II sensitized modifications of ion transport across the plasma membrane of an epithelial cell line: II. Analysis at the level of membrane patches. J Membr Biol. 1998 Dec 1;166(3):187–196. doi: 10.1007/s002329900460. [DOI] [PubMed] [Google Scholar]
- Kunz L., Zeidler U., Haegele K., Przybylski M., Stark G. Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation. Biochemistry. 1995 Sep 19;34(37):11895–11903. doi: 10.1021/bi00037a030. [DOI] [PubMed] [Google Scholar]
- Lee C., Wu S. S., Chen L. B. Photosensitization by 3,3'-dihexyloxacarbocyanine iodide: specific disruption of microtubules and inactivation of organelle motility. Cancer Res. 1995 May 15;55(10):2063–2069. [PubMed] [Google Scholar]
- Levy J. G. Photosensitizers in photodynamic therapy. Semin Oncol. 1994 Dec;21(6 Suppl 15):4–10. [PubMed] [Google Scholar]
- Moore J. V., West C. M., Whitehurst C. The biology of photodynamic therapy. Phys Med Biol. 1997 May;42(5):913–935. doi: 10.1088/0031-9155/42/5/012. [DOI] [PubMed] [Google Scholar]
- Penning L. C., Dubbelman T. M. Fundamentals of photodynamic therapy: cellular and biochemical aspects. Anticancer Drugs. 1994 Apr;5(2):139–146. doi: 10.1097/00001813-199404000-00003. [DOI] [PubMed] [Google Scholar]
- Pohl P., Rosenfeld E., Millner R. Effects of ultrasound on the steady-state transmembrane pH gradient and the permeability of acetic acid through bilayer lipid membranes. Biochim Biophys Acta. 1993 Feb 9;1145(2):279–283. doi: 10.1016/0005-2736(93)90300-o. [DOI] [PubMed] [Google Scholar]
- Pohl P., Saparov S. M., Antonenko Y. N. The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J. 1998 Sep;75(3):1403–1409. doi: 10.1016/S0006-3495(98)74058-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prinsze C., Dubbelman T. M., Van Steveninck J. Protein damage, induced by small amounts of photodynamically generated singlet oxygen or hydroxyl radicals. Biochim Biophys Acta. 1990 Apr 19;1038(2):152–157. doi: 10.1016/0167-4838(90)90198-o. [DOI] [PubMed] [Google Scholar]
- Rokitskaya T. I., Antonenko Y. N., Kotova E. A. The interaction of phthalocyanine with planar lipid bilayers. Photodynamic inactivation of gramicidin channels. FEBS Lett. 1993 Aug 30;329(3):332–335. doi: 10.1016/0014-5793(93)80248-s. [DOI] [PubMed] [Google Scholar]
- Rokitskaya T. I., Block M., Antonenko Y. N., Kotova E. A., Pohl P. Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels. Biophys J. 2000 May;78(5):2572–2580. doi: 10.1016/S0006-3495(00)76801-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal I., Ben-Hur E. Role of oxygen in the phototoxicity of phthalocyanines. Int J Radiat Biol. 1995 Jan;67(1):85–91. doi: 10.1080/09553009514550111. [DOI] [PubMed] [Google Scholar]
- Rywkin S., Lenny L., Goldstein J., Geacintov N. E., Margolis-Nunno H., Horowitz B. Importance of type I and type II mechanisms in the photodynamic inactivation of viruses in blood with aluminum phthalocyanine derivatives. Photochem Photobiol. 1992 Oct;56(4):463–469. doi: 10.1111/j.1751-1097.1992.tb02189.x. [DOI] [PubMed] [Google Scholar]
- Salet C., Moreno G., Ricchelli F., Bernardi P. Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore. J Biol Chem. 1997 Aug 29;272(35):21938–21943. doi: 10.1074/jbc.272.35.21938. [DOI] [PubMed] [Google Scholar]
- Stozhkova I. N., Cherny V. V., Sokolov V. S., Ermakov YuA Adsorption of haematoporphyrins on the planar bilayer membrane. Membr Cell Biol. 1997;11(3):381–399. [PubMed] [Google Scholar]
- Strässle M., Stark G. Photodynamic inactivation of an ion channel: gramicidin A. Photochem Photobiol. 1992 Mar;55(3):461–463. doi: 10.1111/j.1751-1097.1992.tb04262.x. [DOI] [PubMed] [Google Scholar]
- Sun K., Mauzerall D. A simple light-driven transmembrane proton pump. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10758–10762. doi: 10.1073/pnas.93.20.10758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zang L. Y., Misra B. R., van Kuijk F. J., Misra H. P. EPR studies on the kinetics of quenching singlet oxygen. Biochem Mol Biol Int. 1995 Dec;37(6):1187–1195. [PubMed] [Google Scholar]
