Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2252–2258. doi: 10.1016/S0006-3495(00)76472-1

On hydrophobicity correlations in protein chains.

A Irbäck 1, E Sandelin 1
PMCID: PMC1301114  PMID: 11053106

Abstract

We study the statistical properties of hydrophobic/polar model sequences with unique native states on the square lattice. It is shown that this ensemble of sequences differs from random sequences in significant ways in terms of both the distribution of hydrophobicity along the chains and total hydrophobicity. Whenever statistically feasible, the analogous calculations are performed for a set of real enzymes, too.

Full Text

The Full Text of this article is available as a PDF (89.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastolla U., Roman H. E., Vendruscolo M. Neutral evolution of model proteins: diffusion in sequence space and overdispersion. J Theor Biol. 1999 Sep 7;200(1):49–64. doi: 10.1006/jtbi.1999.0975. [DOI] [PubMed] [Google Scholar]
  2. Bornberg-Bauer E., Chan H. S. Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10689–10694. doi: 10.1073/pnas.96.19.10689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bornberg-Bauer E. How are model protein structures distributed in sequence space? Biophys J. 1997 Nov;73(5):2393–2403. doi: 10.1016/S0006-3495(97)78268-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  5. Buchler N. E., Goldstein R. A. Effect of alphabet size and foldability requirements on protein structure designability. Proteins. 1999 Jan 1;34(1):113–124. [PubMed] [Google Scholar]
  6. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Govindarajan S., Goldstein R. A. Evolution of model proteins on a foldability landscape. Proteins. 1997 Dec;29(4):461–466. doi: 10.1002/(sici)1097-0134(199712)29:4<461::aid-prot6>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  8. Govindarajan S., Goldstein R. A. The foldability landscape of model proteins. Biopolymers. 1997 Oct 5;42(4):427–438. doi: 10.1002/(SICI)1097-0282(19971005)42:4<427::AID-BIP6>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  9. Irbäck A., Peterson C., Potthast F. Evidence for nonrandom hydrophobicity structures in protein chains. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9533–9538. doi: 10.1073/pnas.93.18.9533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li H., Helling R., Tang C., Wingreen N. Emergence of preferred structures in a simple model of protein folding. Science. 1996 Aug 2;273(5275):666–669. doi: 10.1126/science.273.5275.666. [DOI] [PubMed] [Google Scholar]
  11. Martin A. C., Orengo C. A., Hutchinson E. G., Jones S., Karmirantzou M., Laskowski R. A., Mitchell J. B., Taroni C., Thornton J. M. Protein folds and functions. Structure. 1998 Jul 15;6(7):875–884. doi: 10.1016/s0969-2126(98)00089-6. [DOI] [PubMed] [Google Scholar]
  12. Nymeyer H., García A. E., Onuchic J. N. Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5921–5928. doi: 10.1073/pnas.95.11.5921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Orengo C. A., Michie A. D., Jones S., Jones D. T., Swindells M. B., Thornton J. M. CATH--a hierarchic classification of protein domain structures. Structure. 1997 Aug 15;5(8):1093–1108. doi: 10.1016/s0969-2126(97)00260-8. [DOI] [PubMed] [Google Scholar]
  14. Pande V. S., Grosberg A. Y., Tanaka T. Nonrandomness in protein sequences: evidence for a physically driven stage of evolution? Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12972–12975. doi: 10.1073/pnas.91.26.12972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peng C. K., Buldyrev S. V., Goldberger A. L., Havlin S., Sciortino F., Simons M., Stanley H. E. Long-range correlations in nucleotide sequences. Nature. 1992 Mar 12;356(6365):168–170. doi: 10.1038/356168a0. [DOI] [PubMed] [Google Scholar]
  16. Sali A., Shakhnovich E., Karplus M. Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. J Mol Biol. 1994 Feb 4;235(5):1614–1636. doi: 10.1006/jmbi.1994.1110. [DOI] [PubMed] [Google Scholar]
  17. Tiana G., Broglia R. A., Shakhnovich E. I. Hiking in the energy landscape in sequence space: a bumpy road to good folders. Proteins. 2000 May 15;39(3):244–251. [PubMed] [Google Scholar]
  18. White S. H., Jacobs R. E. Statistical distribution of hydrophobic residues along the length of protein chains. Implications for protein folding and evolution. Biophys J. 1990 Apr;57(4):911–921. doi: 10.1016/S0006-3495(90)82611-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES