Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2557–2571. doi: 10.1016/S0006-3495(00)76496-4

Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase.

A Babes 1, K Fendler 1
PMCID: PMC1301138  PMID: 11053130

Abstract

We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P.

Full Text

The Full Text of this article is available as a PDF (179.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apell H. J., Borlinghaus R., Läuger P. Fast charge translocations associated with partial reactions of the Na,K-pump: II. Microscopic analysis of transient currents. J Membr Biol. 1987;97(3):179–191. doi: 10.1007/BF01869221. [DOI] [PubMed] [Google Scholar]
  2. Benz R., Janko K. Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim Biophys Acta. 1976 Dec 14;455(3):721–738. doi: 10.1016/0005-2736(76)90043-2. [DOI] [PubMed] [Google Scholar]
  3. Borlinghaus R., Apell H. J., Läuger P. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP. J Membr Biol. 1987;97(3):161–178. doi: 10.1007/BF01869220. [DOI] [PubMed] [Google Scholar]
  4. Clarke R. J., Kane D. J., Apell H. J., Roudna M., Bamberg E. Kinetics of Na(+)-dependent conformational changes of rabbit kidney Na+,K(+)-ATPase. Biophys J. 1998 Sep;75(3):1340–1353. doi: 10.1016/S0006-3495(98)74052-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Weer P., Gadsby D. C., Rakowski R. F. Voltage dependence of the Na-K pump. Annu Rev Physiol. 1988;50:225–241. doi: 10.1146/annurev.ph.50.030188.001301. [DOI] [PubMed] [Google Scholar]
  6. Fendler K., Grell E., Bamberg E. Kinetics of pump currents generated by the Na+,K+-ATPase. FEBS Lett. 1987 Nov 16;224(1):83–88. doi: 10.1016/0014-5793(87)80427-1. [DOI] [PubMed] [Google Scholar]
  7. Fendler K., Grell E., Haubs M., Bamberg E. Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes. EMBO J. 1985 Dec 1;4(12):3079–3085. doi: 10.1002/j.1460-2075.1985.tb04048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fendler K., Jaruschewski S., Hobbs A., Albers W., Froehlich J. P. Pre-steady-state charge translocation in NaK-ATPase from eel electric organ. J Gen Physiol. 1993 Oct;102(4):631–666. doi: 10.1085/jgp.102.4.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forbush B., 3rd, Klodos I. Rate-limiting steps in Na translocation by the Na/K pump. Soc Gen Physiol Ser. 1991;46:210–225. [PubMed] [Google Scholar]
  10. Friedrich T., Bamberg E., Nagel G. Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys J. 1996 Nov;71(5):2486–2500. doi: 10.1016/S0006-3495(96)79442-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedrich T., Nagel G. Comparison of Na+/K(+)-ATPase pump currents activated by ATP concentration or voltage jumps. Biophys J. 1997 Jul;73(1):186–194. doi: 10.1016/S0006-3495(97)78059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gadsby D. C., Nakao M., Bahinski A., Nagel G., Suenson M. Charge movements via the cardiac Na,K-ATPase. Acta Physiol Scand Suppl. 1992;607:111–123. [PubMed] [Google Scholar]
  13. Gadsby D. C., Rakowski R. F., De Weer P. Extracellular access to the Na,K pump: pathway similar to ion channel. Science. 1993 Apr 2;260(5104):100–103. doi: 10.1126/science.7682009. [DOI] [PubMed] [Google Scholar]
  14. Ganea C., Babes A., Lüpfert C., Grell E., Fendler K., Clarke R. J. Hofmeister effects of anions on the kinetics of partial reactions of the Na+,K+-ATPase. Biophys J. 1999 Jul;77(1):267–281. doi: 10.1016/S0006-3495(99)76888-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glynn I. M. Annual review prize lecture. 'All hands to the sodium pump'. J Physiol. 1993 Mar;462:1–30. doi: 10.1113/jphysiol.1993.sp019540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heyse S., Wuddel I., Apell H. J., Stürmer W. Partial reactions of the Na,K-ATPase: determination of rate constants. J Gen Physiol. 1994 Aug;104(2):197–240. doi: 10.1085/jgp.104.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hilgemann D. W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 1994 Mar 11;263(5152):1429–1432. doi: 10.1126/science.8128223. [DOI] [PubMed] [Google Scholar]
  18. Hobbs A. S., Albers R. W., Froehlich J. P. Complex time dependence of phosphoenzyme formation and decomposition in electroplax Na,K-ATPase. Prog Clin Biol Res. 1988;268A:307–314. [PubMed] [Google Scholar]
  19. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  20. Kane D. J., Fendler K., Grell E., Bamberg E., Taniguchi K., Froehlich J. P., Clarke R. J. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry. 1997 Oct 28;36(43):13406–13420. doi: 10.1021/bi970598w. [DOI] [PubMed] [Google Scholar]
  21. Lu C. C., Kabakov A., Markin V. S., Mager S., Frazier G. A., Hilgemann D. W. Membrane transport mechanisms probed by capacitance measurements with megahertz voltage clamp. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11220–11224. doi: 10.1073/pnas.92.24.11220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCray J. A., Herbette L., Kihara T., Trentham D. R. A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7237–7241. doi: 10.1073/pnas.77.12.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagel G., Fendler K., Grell E., Bamberg E. Na+ currents generated by the purified (Na+ + K+)-ATPase on planar lipid membranes. Biochim Biophys Acta. 1987 Jul 23;901(2):239–249. doi: 10.1016/0005-2736(87)90120-9. [DOI] [PubMed] [Google Scholar]
  24. Nakao M., Gadsby D. C. Voltage dependence of Na translocation by the Na/K pump. Nature. 1986 Oct 16;323(6089):628–630. doi: 10.1038/323628a0. [DOI] [PubMed] [Google Scholar]
  25. Rakowski R. F. Charge movement by the Na/K pump in Xenopus oocytes. J Gen Physiol. 1993 Jan;101(1):117–144. doi: 10.1085/jgp.101.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rakowski R. F., Gadsby D. C., De Weer P. Voltage dependence of the Na/K pump. J Membr Biol. 1997 Jan 15;155(2):105–112. doi: 10.1007/s002329900162. [DOI] [PubMed] [Google Scholar]
  27. Scales D., Giuseppeinesi Assembly of ATPase protein in sarcoplasmic reticulum membranes. Biophys J. 1976 Jul;16(7):735–751. doi: 10.1016/S0006-3495(76)85725-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sokolov V. S., Stukolov S. M., Darmostuk A. S., Apell H. J. Influence of sodium concentration on changes of membrane capacitance associated with the electrogenic ion transport by the Na,K-ATPase. Eur Biophys J. 1998;27(6):605–617. doi: 10.1007/s002490050172. [DOI] [PubMed] [Google Scholar]
  29. Stein W. D. Energetics and the design principles of the Na/K-ATPase. J Theor Biol. 1990 Nov 21;147(2):145–159. doi: 10.1016/s0022-5193(05)80049-9. [DOI] [PubMed] [Google Scholar]
  30. Stürmer W., Bühler R., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J Membr Biol. 1991 Apr;121(2):163–176. doi: 10.1007/BF01870530. [DOI] [PubMed] [Google Scholar]
  31. Suzuki K., Post R. L. Equilibrium of phosphointermediates of sodium and potassium ion transport adenosine triphosphatase: action of sodium ion and Hofmeister effect. J Gen Physiol. 1997 May;109(5):537–554. doi: 10.1085/jgp.109.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taniguchi K., Post R. L. Synthesis of adenosine triphosphate and exchange between inorganic phosphate and adenosine triphosphate in sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1975 Apr 25;250(8):3010–3018. [PubMed] [Google Scholar]
  33. Wuddel I., Apell H. J. Electrogenicity of the sodium transport pathway in the Na,K-ATPase probed by charge-pulse experiments. Biophys J. 1995 Sep;69(3):909–921. doi: 10.1016/S0006-3495(95)79965-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES