Abstract
Glycerol has been shown to lower the heat denaturation temperature (T(m)) of dehydrated lysozyme while elevating the T(m) of hydrated lysozyme (. J. Pharm. Sci. 84:707-712). Here, we report an in situ elastic neutron scattering study of the effect of glycerol and hydration on the internal dynamics of lysozyme powder. Anharmonic motions associated with structural relaxation processes were not detected for dehydrated lysozyme in the temperature range of 40 to 450K. Dehydrated lysozyme was found to have the highest T(m) by. Upon the addition of glycerol or water, anharmonicity was recovered above a dynamic transition temperature (T(d)), which may contribute to the reduction of T(m) values for dehydrated lysozyme in the presence of glycerol. The greatest degree of anharmonicity, as well as the lowest T(d), was observed for lysozyme solvated with water. Hydrated lysozyme was also found to have the lowest T(m) by. In the regime above T(d), larger amounts of glycerol lead to a higher rate of change in anharmonic motions as a function of temperature, rendering the material more heat labile. Below T(d), where harmonic motions dominate, the addition of glycerol resulted in a lower amplitude of motions, correlating with a stabilizing effect of glycerol on the protein.
Full Text
The Full Text of this article is available as a PDF (53.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angell C. A. The old problems of glass and the glass transition, and the many new twists. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6675–6682. doi: 10.1073/pnas.92.15.6675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
- Bell L. N., Hageman M. J., Bauer J. M. Impact of moisture on thermally induced denaturation and decomposition of lyophilized bovine somatotropin. Biopolymers. 1995 Feb;35(2):201–209. doi: 10.1002/bip.360350208. [DOI] [PubMed] [Google Scholar]
- Bell L. N., Hageman M. J., Muraoka L. M. Thermally induced denaturation of lyophilized bovine somatotropin and lysozyme as impacted by moisture and excipients. J Pharm Sci. 1995 Jun;84(6):707–712. doi: 10.1002/jps.2600840608. [DOI] [PubMed] [Google Scholar]
- Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- Fitter J. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys J. 1999 Feb;76(2):1034–1042. doi: 10.1016/S0006-3495(99)77268-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
- Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
- Hancock B. C., Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997 Jan;86(1):1–12. doi: 10.1021/js9601896. [DOI] [PubMed] [Google Scholar]
- Inoue H., Timasheff S. N. The interaction of beta-lactoglobulin with solvent components in mixed water-organic solvent systems. J Am Chem Soc. 1968 Mar 27;90(7):1890–1898. doi: 10.1021/ja01009a037. [DOI] [PubMed] [Google Scholar]
- Kleinert T., Doster W., Leyser H., Petry W., Schwarz V., Settles M. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin. Biochemistry. 1998 Jan 13;37(2):717–733. doi: 10.1021/bi971508q. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Timasheff S. N. The stabilization of proteins by sucrose. J Biol Chem. 1981 Jul 25;256(14):7193–7201. [PubMed] [Google Scholar]
- Lichtenegger H., Doster W., Kleinert T., Birk A., Sepiol B., Vogl G. Heme-solvent coupling: a Mössbauer study of myoglobin in sucrose. Biophys J. 1999 Jan;76(1 Pt 1):414–422. doi: 10.1016/S0006-3495(99)77208-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prestrelski S. J., Tedeschi N., Arakawa T., Carpenter J. F. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J. 1993 Aug;65(2):661–671. doi: 10.1016/S0006-3495(93)81120-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qu Y., Bolen C. L., Bolen D. W. Osmolyte-driven contraction of a random coil protein. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9268–9273. doi: 10.1073/pnas.95.16.9268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Receveur V., Calmettes P., Smith J. C., Desmadril M., Coddens G., Durand D. Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins. 1997 Jul;28(3):380–387. [PubMed] [Google Scholar]
- Remmele R. L., Jr, Stushnoff C., Carpenter J. F. Real-time in situ monitoring of lysozyme during lyophilization using infrared spectroscopy: dehydration stress in the presence of sucrose. Pharm Res. 1997 Nov;14(11):1548–1555. doi: 10.1023/a:1012170116311. [DOI] [PubMed] [Google Scholar]
- Réat V., Patzelt H., Ferrand M., Pfister C., Oesterhelt D., Zaccai G. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970–4975. doi: 10.1073/pnas.95.9.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang K. E., Dill K. A. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J Biomol Struct Dyn. 1998 Oct;16(2):397–411. doi: 10.1080/07391102.1998.10508256. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N., Inoue H. Preferential binding of solvent components to proteins in mixed water--organic solvent systems. Biochemistry. 1968 Jul;7(7):2501–2513. doi: 10.1021/bi00847a009. [DOI] [PubMed] [Google Scholar]
- Wang A., Bolen D. W. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry. 1997 Jul 29;36(30):9101–9108. doi: 10.1021/bi970247h. [DOI] [PubMed] [Google Scholar]
- Wuttke J, Petry W, Coddens G, Fujara F. Fast dynamics of glass-forming glycerol. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):4026–4034. doi: 10.1103/physreve.52.4026. [DOI] [PubMed] [Google Scholar]
- Xie G., Timasheff S. N. Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured then for the native protein. Protein Sci. 1997 Jan;6(1):211–221. doi: 10.1002/pro.5560060123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yon J. M., Perahia D., Ghélis C. Conformational dynamics and enzyme activity. Biochimie. 1998 Jan;80(1):33–42. doi: 10.1016/s0300-9084(98)80054-0. [DOI] [PubMed] [Google Scholar]