Abstract
Real synaptic systems consist of a nonuniform population of synapses with a broad spectrum of probability and response distributions varying between synapses, and broad amplitude distributions of postsynaptic unitary responses within a given synapse. A common approach to such systems has been to assume identical synapses and recover apparent quantal parameters by deconvolution procedures from measured evoked (ePSC) and unitary evoked postsynaptic current (uePSC) distributions. Here we explicitly consider nonuniform synaptic systems with both intra (type I) and intersynaptic (type II) response variability and formally define an equivalent system of uniform synapses in which both uePSC and ePSC amplitude distributions best approximate those of the actual nonuniform synaptic system. This equivalent system has the advantage of being fully defined by just four quantal parameters: ñ, the number of equivalent synapses;p, the mean probability of quantal release; mu, mean; and sigma(2), variance of the uePSC distribution. We show that these equivalent parameters are weighted averages of intrinsic parameters and can be approximated by apparent quantal parameters, therefore establishing a useful analytical link between the apparent and intrinsic parameters. The present study extends previous work on compound binomial analysis of synaptic transmission by highlighting the importance of the product of p and mu, and the variance of that product. Conditions for a unique deconvolution of apparent uniform synaptic parameters have been derived and justified. Our approach does not require independence of synaptic parameters, such as p and mu from each other, therefore the approach will hold even if feedback (i.e., via retrograde transmission) exists between pre and postsynaptic signals. Using numerical simulations we demonstrate how equivalent parameters are meaningful even when there is considerable variation in intrinsic parameters, including systems where subpopulations of high- and low-release probability synapses are present, therefore even under such conditions the apparent parameters estimated from experiments would be informative.
Full Text
The Full Text of this article is available as a PDF (178.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdul-Ghani M. A., Valiante T. A., Pennefather P. S. Sr2+ and quantal events at excitatory synapses between mouse hippocampal neurons in culture. J Physiol. 1996 Aug 15;495(Pt 1):113–125. doi: 10.1113/jphysiol.1996.sp021578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asztely F., Erdemli G., Kullmann D. M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron. 1997 Feb;18(2):281–293. doi: 10.1016/s0896-6273(00)80268-8. [DOI] [PubMed] [Google Scholar]
- Bekkers J. M., Clements J. D. Quantal amplitude and quantal variance of strontium-induced asynchronous EPSCs in rat dentate granule neurons. J Physiol. 1999 Apr 1;516(Pt 1):227–248. doi: 10.1111/j.1469-7793.1999.227aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bekkers J. M., Richerson G. B., Stevens C. F. Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5359–5362. doi: 10.1073/pnas.87.14.5359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Lavidis N. A. The effect of calcium ions on the secretion of quanta evoked by an impulse at nerve terminal release sites. J Gen Physiol. 1979 Oct;74(4):429–456. doi: 10.1085/jgp.74.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown T. H., Perkel D. H., Feldman M. W. Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2913–2917. doi: 10.1073/pnas.73.8.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callister R. J., Walmsley B. Amplitude and time course of evoked and spontaneous synaptic currents in rat submandibular ganglion cells. J Physiol. 1996 Jan 1;490(Pt 1):149–157. doi: 10.1113/jphysiol.1996.sp021132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll R. C., Lissin D. V., von Zastrow M., Nicoll R. A., Malenka R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat Neurosci. 1999 May;2(5):454–460. doi: 10.1038/8123. [DOI] [PubMed] [Google Scholar]
- Clements J. D., Silver R. A. Unveiling synaptic plasticity: a new graphical and analytical approach. Trends Neurosci. 2000 Mar;23(3):105–113. doi: 10.1016/s0166-2236(99)01520-9. [DOI] [PubMed] [Google Scholar]
- Diamond J. S., Jahr C. E. Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron. 1995 Nov;15(5):1097–1107. doi: 10.1016/0896-6273(95)90098-5. [DOI] [PubMed] [Google Scholar]
- Dityatev A. E., Clamann H. P. Limits of quantal analysis reliability: quantal and unimodal constraints and setting of confidence intervals for quantal size. J Neurosci Methods. 1993 Oct;50(1):67–82. doi: 10.1016/0165-0270(93)90057-x. [DOI] [PubMed] [Google Scholar]
- Dobrunz L. E., Stevens C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron. 1997 Jun;18(6):995–1008. doi: 10.1016/s0896-6273(00)80338-4. [DOI] [PubMed] [Google Scholar]
- Edwards F. A. LTP--a structural model to explain the inconsistencies. Trends Neurosci. 1995 Jun;18(6):250–255. doi: 10.1016/0166-2236(95)80003-k. [DOI] [PubMed] [Google Scholar]
- Faber D. S., Korn H. Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys J. 1991 Nov;60(5):1288–1294. doi: 10.1016/S0006-3495(91)82162-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forti L., Bossi M., Bergamaschi A., Villa A., Malgaroli A. Loose-patch recordings of single quanta at individual hippocampal synapses. Nature. 1997 Aug 28;388(6645):874–878. doi: 10.1038/42251. [DOI] [PubMed] [Google Scholar]
- Frerking M., Wilson M. Effects of variance in mini amplitude on stimulus-evoked release: a comparison of two models. Biophys J. 1996 May;70(5):2078–2091. doi: 10.1016/S0006-3495(96)79774-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardingham N. R., Larkman A. U. Rapid report: the reliability of excitatory synaptic transmission in slices of rat visual cortex in vitro is temperature dependent. J Physiol. 1998 Feb 15;507(Pt 1):249–256. doi: 10.1111/j.1469-7793.1998.249bu.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hessler N. A., Shirke A. M., Malinow R. The probability of transmitter release at a mammalian central synapse. Nature. 1993 Dec 9;366(6455):569–572. doi: 10.1038/366569a0. [DOI] [PubMed] [Google Scholar]
- Jack J. J., Larkman A. U., Major G., Stratford K. J. Quantal analysis of the synaptic excitation of CA1 hippocampal pyramidal cells. Adv Second Messenger Phosphoprotein Res. 1994;29:275–299. doi: 10.1016/s1040-7952(06)80021-2. [DOI] [PubMed] [Google Scholar]
- Korn H., Faber D. S. Quantal analysis and synaptic efficacy in the CNS. Trends Neurosci. 1991 Oct;14(10):439–445. doi: 10.1016/0166-2236(91)90042-s. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M. Applications of the expectation-maximization algorithm to quantal analysis of postsynaptic potentials. J Neurosci Methods. 1989 Dec;30(3):231–245. doi: 10.1016/0165-0270(89)90134-9. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M. Excitatory synapses. Neither too loud nor too quiet. Nature. 1999 May 13;399(6732):111–112. doi: 10.1038/20089. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M. Quantal analysis using maximum entropy noise deconvolution. J Neurosci Methods. 1992 Aug;44(1):47–57. doi: 10.1016/0165-0270(92)90113-r. [DOI] [PubMed] [Google Scholar]
- Kullmann D. M., Siegelbaum S. A. The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron. 1995 Nov;15(5):997–1002. doi: 10.1016/0896-6273(95)90089-6. [DOI] [PubMed] [Google Scholar]
- Ling L., Tolhurst D. J. Recovering the parameters of finite mixtures of normal distributions from a noisy record: an empirical comparison of different estimating procedures. J Neurosci Methods. 1983 Aug;8(4):309–333. doi: 10.1016/0165-0270(83)90090-0. [DOI] [PubMed] [Google Scholar]
- Liu G., Choi S., Tsien R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron. 1999 Feb;22(2):395–409. doi: 10.1016/s0896-6273(00)81099-5. [DOI] [PubMed] [Google Scholar]
- Liu G., Tsien R. W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature. 1995 Jun 1;375(6530):404–408. doi: 10.1038/375404a0. [DOI] [PubMed] [Google Scholar]
- Liu G., Tsien R. W. Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology. 1995 Nov;34(11):1407–1421. doi: 10.1016/0028-3908(95)00143-t. [DOI] [PubMed] [Google Scholar]
- Markram H., Lübke J., Frotscher M., Roth A., Sakmann B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol. 1997 Apr 15;500(Pt 2):409–440. doi: 10.1113/jphysiol.1997.sp022031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLachlan E. M. An analysis of the release of acetylcholine from preganglionic nerve terminals. J Physiol. 1975 Feb;245(2):447–466. doi: 10.1113/jphysiol.1975.sp010855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morales M., Goda Y. Nomadic AMPA receptors and LTP. Neuron. 1999 Jul;23(3):431–434. doi: 10.1016/s0896-6273(00)80797-7. [DOI] [PubMed] [Google Scholar]
- Murphy T. H., Baraban J. M., Wier W. G. Mapping miniature synaptic currents to single synapses using calcium imaging reveals heterogeneity in postsynaptic output. Neuron. 1995 Jul;15(1):159–168. doi: 10.1016/0896-6273(95)90073-x. [DOI] [PubMed] [Google Scholar]
- Murthy V. N., Sejnowski T. J., Stevens C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron. 1997 Apr;18(4):599–612. doi: 10.1016/s0896-6273(00)80301-3. [DOI] [PubMed] [Google Scholar]
- Oleskevich S., Alvarez F. J., Walmsley B. Glycinergic miniature synaptic currents and receptor cluster sizes differ between spinal cord interneurons. J Neurophysiol. 1999 Jul;82(1):312–319. doi: 10.1152/jn.1999.82.1.312. [DOI] [PubMed] [Google Scholar]
- Oliet S. H., Malenka R. C., Nicoll R. A. Bidirectional control of quantal size by synaptic activity in the hippocampus. Science. 1996 Mar 1;271(5253):1294–1297. doi: 10.1126/science.271.5253.1294. [DOI] [PubMed] [Google Scholar]
- Otmakhov N., Shirke A. M., Malinow R. Measuring the impact of probabilistic transmission on neuronal output. Neuron. 1993 Jun;10(6):1101–1111. doi: 10.1016/0896-6273(93)90058-y. [DOI] [PubMed] [Google Scholar]
- Prange O., Murphy T. H. Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J Neurosci. 1999 Aug 1;19(15):6427–6438. doi: 10.1523/JNEUROSCI.19-15-06427.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quastel D. M. The binomial model in fluctuation analysis of quantal neurotransmitter release. Biophys J. 1997 Feb;72(2 Pt 1):728–753. doi: 10.1016/s0006-3495(97)78709-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raastad Morten, Storm Johan F., Andersen Per. Putative Single Quantum and Single Fibre Excitatory Postsynaptic Currents Show Similar Amplitude Range and Variability in Rat Hippocampal Slices. Eur J Neurosci. 1992 Oct;4(1):113–117. doi: 10.1111/j.1460-9568.1992.tb00114.x. [DOI] [PubMed] [Google Scholar]
- Redman S. Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol Rev. 1990 Jan;70(1):165–198. doi: 10.1152/physrev.1990.70.1.165. [DOI] [PubMed] [Google Scholar]
- Reid C. A., Clements J. D. Postsynaptic expression of long-term potentiation in the rat dentate gyrus demonstrated by variance-mean analysis. J Physiol. 1999 Jul 1;518(Pt 1):121–130. doi: 10.1111/j.1469-7793.1999.0121r.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenmund C., Clements J. D., Westbrook G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science. 1993 Oct 29;262(5134):754–757. doi: 10.1126/science.7901909. [DOI] [PubMed] [Google Scholar]
- Rosenmund C., Stevens C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron. 1996 Jun;16(6):1197–1207. doi: 10.1016/s0896-6273(00)80146-4. [DOI] [PubMed] [Google Scholar]
- Rumpel E., Behrends J. C. Sr2+-dependent asynchronous evoked transmission at rat striatal inhibitory synapses in vitro. J Physiol. 1999 Jan 15;514(Pt 2):447–458. doi: 10.1111/j.1469-7793.1999.447ae.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schikorski T., Stevens C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci. 1997 Aug 1;17(15):5858–5867. doi: 10.1523/JNEUROSCI.17-15-05858.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheng M. Excitatory synapses. Glutamate receptors put in their place. Nature. 1997 Mar 20;386(6622):221–223. doi: 10.1038/386221a0. [DOI] [PubMed] [Google Scholar]
- Silver R. A., Momiyama A., Cull-Candy S. G. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J Physiol. 1998 Aug 1;510(Pt 3):881–902. doi: 10.1111/j.1469-7793.1998.881bj.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith B. R., Wojtowicz J. M., Atwood H. L. Maximum likelihood estimation of non-uniform transmitter release probabilities at the crayfish neuromuscular junction. J Theor Biol. 1991 Jun 21;150(4):457–472. doi: 10.1016/s0022-5193(05)80440-0. [DOI] [PubMed] [Google Scholar]
- Stevens C. F., Wang Y. Facilitation and depression at single central synapses. Neuron. 1995 Apr;14(4):795–802. doi: 10.1016/0896-6273(95)90223-6. [DOI] [PubMed] [Google Scholar]
- Stricker C., Redman S., Daley D. Statistical analysis of synaptic transmission: model discrimination and confidence limits. Biophys J. 1994 Aug;67(2):532–547. doi: 10.1016/S0006-3495(94)80513-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stricker C., Redman S. Statistical models of synaptic transmission evaluated using the expectation-maximization algorithm. Biophys J. 1994 Aug;67(2):656–670. doi: 10.1016/S0006-3495(94)80514-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taschenberger H., Engert F., Grantyn R. Synaptic current kinetics in a solely AMPA-receptor-operated glutamatergic synapse formed by rat retinal ganglion neurons. J Neurophysiol. 1995 Sep;74(3):1123–1136. doi: 10.1152/jn.1995.74.3.1123. [DOI] [PubMed] [Google Scholar]
- Uteshev V. V., Pennefather P. S. A mathematical description of miniature postsynaptic current generation at central nervous system synapses. Biophys J. 1996 Sep;71(3):1256–1266. doi: 10.1016/S0006-3495(96)79325-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uteshev V. V., Pennefather P. S. Analytical description of the activation of multi-state receptors by continuous neurotransmitter signals at brain synapses. Biophys J. 1997 Mar;72(3):1127–1134. doi: 10.1016/S0006-3495(97)78761-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahl L. M., Stratford K. J., Larkman A. U., Jack J. J. The variance of successive peaks in synaptic amplitude histograms: effects of inter-site differences in quantal size. Proc Biol Sci. 1995 Oct 23;262(1363):77–85. doi: 10.1098/rspb.1995.0179. [DOI] [PubMed] [Google Scholar]
- Walmsley B. Interpretation of 'quantal' peaks in distributions of evoked synaptic transmission at central synapses. Proc Biol Sci. 1995 Aug 22;261(1361):245–250. doi: 10.1098/rspb.1995.0144. [DOI] [PubMed] [Google Scholar]
- Watt A. J., van Rossum M. C., MacLeod K. M., Nelson S. B., Turrigiano G. G. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron. 2000 Jun;26(3):659–670. doi: 10.1016/s0896-6273(00)81202-7. [DOI] [PubMed] [Google Scholar]
- van Rossum D., Hanisch U. K. Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci. 1999 Jul;22(7):290–295. doi: 10.1016/s0166-2236(99)01404-6. [DOI] [PubMed] [Google Scholar]