Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):2902–2908. doi: 10.1016/S0006-3495(00)76527-1

Protein motions at zero-total angular momentum: the importance of long-range correlations.

Y Zhou 1, M Cook 1, M Karplus 1
PMCID: PMC1301169  PMID: 11106598

Abstract

A constant-energy molecular dynamics simulation is used to monitor protein motion at zero-total angular momentum. With a simple protein model, it is shown that overall rotation is possible at zero-total angular momentum as a result of flexibility. Since the rotational motion is negligible on a time scale of 1000 reduced time units, the essentially rotation-free portion of the trajectory provides an unbiased test of the common approximate methods for separating overall rotation from internal motions by optimal superposition. Removing rotation by minimizing the root-mean-square deviation (RMSD) for the entire system is found to be more appropriate than using the RMSD for only the more rigid part of the system. The results verify the existence of positive cross-correlation in the motions of atoms separated by large distances.

Full Text

The Full Text of this article is available as a PDF (273.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abseher R., Nilges M. Are there non-trivial dynamic cross-correlations in proteins? J Mol Biol. 1998 Jun 19;279(4):911–920. doi: 10.1006/jmbi.1998.1807. [DOI] [PubMed] [Google Scholar]
  2. Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brooks B., Karplus M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6571–6575. doi: 10.1073/pnas.80.21.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hünenberger P. H., Mark A. E., van Gunsteren W. F. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J Mol Biol. 1995 Sep 29;252(4):492–503. doi: 10.1006/jmbi.1995.0514. [DOI] [PubMed] [Google Scholar]
  5. Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
  6. Karplus M., Ichiye T. Comment on a "fluctuation and cross correlation analysis of protein motions observed in nanosecond molecular dynamics simulations". J Mol Biol. 1996 Oct 25;263(2):120–122. doi: 10.1006/jmbi.1996.0562. [DOI] [PubMed] [Google Scholar]
  7. Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
  8. Zhou Y., Karplus M. Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis. J Mol Biol. 1999 Nov 5;293(4):917–951. doi: 10.1006/jmbi.1999.2936. [DOI] [PubMed] [Google Scholar]
  9. Zhou Y., Karplus M. Folding thermodynamics of a model three-helix-bundle protein. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14429–14432. doi: 10.1073/pnas.94.26.14429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zhou Y., Karplus M. Interpreting the folding kinetics of helical proteins. Nature. 1999 Sep 23;401(6751):400–403. doi: 10.1038/43937. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES