Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3193–3200. doi: 10.1016/S0006-3495(00)76552-0

Electrostatic control of phospholipid polymorphism.

Y S Tarahovsky 1, A L Arsenault 1, R C MacDonald 1, T J McIntosh 1, R M Epand 1
PMCID: PMC1301194  PMID: 11106623

Abstract

A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.

Full Text

The Full Text of this article is available as a PDF (539.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aota-Nakano Y., Li S. J., Yamazaki M. Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. Biochim Biophys Acta. 1999 Nov 9;1461(1):96–102. doi: 10.1016/s0005-2736(99)00156-x. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharya S., Mandal S. S. Evidence of interlipidic ion-pairing in anion-induced DNA release from cationic amphiphile-DNA complexes. Mechanistic implications in transfection. Biochemistry. 1998 May 26;37(21):7764–7777. doi: 10.1021/bi971772j. [DOI] [PubMed] [Google Scholar]
  3. Briggs J., Caffrey M. The temperature-composition phase diagram of monomyristolein in water: equilibrium and metastability aspects. Biophys J. 1994 Mar;66(3 Pt 1):573–587. doi: 10.1016/s0006-3495(94)80847-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung H., Caffrey M. The curvature elastic-energy function of the lipid-water cubic mesophase. Nature. 1994 Mar 17;368(6468):224–226. doi: 10.1038/368224a0. [DOI] [PubMed] [Google Scholar]
  5. De Kruijff B., Verkleij A. J., Leunissen-Bijvelt J., Van Echteld C. J., Hille J., Rijnbout H. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin. Biochim Biophys Acta. 1982 Dec 8;693(1):1–12. doi: 10.1016/0005-2736(82)90464-3. [DOI] [PubMed] [Google Scholar]
  6. Delacroix H. Crystallographic analysis of freeze-fracture electron micrographs: application to the structure determination of cubic lipid-water phases. J Microsc. 1998 Dec;192(Pt 3):280–292. doi: 10.1046/j.1365-2818.1998.00388.x. [DOI] [PubMed] [Google Scholar]
  7. Deng Y., Marko M., Buttle K. F., Leith A., Mieczkowski M., Mannella C. A. Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J Struct Biol. 1999 Oct;127(3):231–239. doi: 10.1006/jsbi.1999.4147. [DOI] [PubMed] [Google Scholar]
  8. Epand R. M., Epand R. F. Calorimetric detection of curvature strain in phospholipid bilayers. Biophys J. 1994 May;66(5):1450–1456. doi: 10.1016/S0006-3495(94)80935-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farhood H., Bottega R., Epand R. M., Huang L. Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim Biophys Acta. 1992 Nov 9;1111(2):239–246. doi: 10.1016/0005-2736(92)90316-e. [DOI] [PubMed] [Google Scholar]
  10. Farhood H., Gao X., Son K., Yang Y. Y., Lazo J. S., Huang L., Barsoum J., Bottega R., Epand R. M. Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann N Y Acad Sci. 1994 May 31;716:23–35. doi: 10.1111/j.1749-6632.1994.tb21701.x. [DOI] [PubMed] [Google Scholar]
  11. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995 Dec;2(10):710–722. [PubMed] [Google Scholar]
  13. Gorman C. M., Aikawa M., Fox B., Fox E., Lapuz C., Michaud B., Nguyen H., Roche E., Sawa T., Wiener-Kronish J. P. Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC. Gene Ther. 1997 Sep;4(9):983–992. doi: 10.1038/sj.gt.3300473. [DOI] [PubMed] [Google Scholar]
  14. Gruner S. M., Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem. 1985;14:211–238. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
  15. Israelachvili J. N., Mitchell D. J. A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta. 1975 Apr 21;389(1):13–19. doi: 10.1016/0005-2736(75)90381-8. [DOI] [PubMed] [Google Scholar]
  16. Kennedy M. T., Pozharski E. V., Rakhmanova V. A., MacDonald R. C. Factors governing the assembly of cationic phospholipid-DNA complexes. Biophys J. 2000 Mar;78(3):1620–1633. doi: 10.1016/S0006-3495(00)76714-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kinnunen P. K., Rytömaa M., Kõiv A., Lehtonen J., Mustonen P., Aro A. Sphingosine-mediated membrane association of DNA and its reversal by phosphatidic acid. Chem Phys Lipids. 1993 Nov;66(1-2):75–85. doi: 10.1016/0009-3084(93)90033-y. [DOI] [PubMed] [Google Scholar]
  18. Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids. 1994 Jan;69(1):1–34. doi: 10.1016/0009-3084(94)90024-8. [DOI] [PubMed] [Google Scholar]
  19. Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532–14535. doi: 10.1073/pnas.93.25.14532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Landh T. From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett. 1995 Aug 1;369(1):13–17. doi: 10.1016/0014-5793(95)00660-2. [DOI] [PubMed] [Google Scholar]
  21. Leventis R., Fuller N., Rand R. P., Yeagle P. L., Sen A., Zuckermann M. J., Silvius J. R. Molecular organization and stability of hydrated dispersions of headgroup-modified phosphatidylethanolamine analogues. Biochemistry. 1991 Jul 23;30(29):7212–7219. doi: 10.1021/bi00243a024. [DOI] [PubMed] [Google Scholar]
  22. Luzzati V. Biological significance of lipid polymorphism: the cubic phases. Curr Opin Struct Biol. 1997 Oct;7(5):661–668. doi: 10.1016/s0959-440x(97)80075-9. [DOI] [PubMed] [Google Scholar]
  23. MacDonald R. C., Ashley G. W., Shida M. M., Rakhmanova V. A., Tarahovsky Y. S., Pantazatos D. P., Kennedy M. T., Pozharski E. V., Baker K. A., Jones R. D. Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys J. 1999 Nov;77(5):2612–2629. doi: 10.1016/S0006-3495(99)77095-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacDonald R. C., Rakhmanova V. A., Choi K. L., Rosenzweig H. S., Lahiri M. K. O-ethylphosphatidylcholine: A metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci. 1999 Sep;88(9):896–904. doi: 10.1021/js990006q. [DOI] [PubMed] [Google Scholar]
  25. Mariani P., Luzzati V., Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 1988 Nov 5;204(1):165–189. doi: 10.1016/0022-2836(88)90607-9. [DOI] [PubMed] [Google Scholar]
  26. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  27. Miller C. R., Bondurant B., McLean S. D., McGovern K. A., O'Brien D. F. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998 Sep 15;37(37):12875–12883. doi: 10.1021/bi980096y. [DOI] [PubMed] [Google Scholar]
  28. Noordam P. C., van Echteld C. J., de Kruijff B., Verkleij A. J., de Gier J. Barrier characteristics of membrane model systems containing unsaturated phosphatidylethanolamines. Chem Phys Lipids. 1980 Oct;27(3):221–232. doi: 10.1016/0009-3084(80)90037-7. [DOI] [PubMed] [Google Scholar]
  29. Rummel G, Hardmeyer A, Widmer C, Chiu ML, Nollert P, Locher KP, Pedruzzi I, I, Landau EM, Rosenbusch JP. Lipidic Cubic Phases: New Matrices for the Three-Dimensional Crystallization of Membrane Proteins. J Struct Biol. 1998;121(2):82–91. doi: 10.1006/jsbi.1997.3952. [DOI] [PubMed] [Google Scholar]
  30. Scherman D., Bessodes M., Cameron B., Herscovici J., Hofland H., Pitard B., Soubrier F., Wils P., Crouzet J. Application of lipids and plasmid design for gene delivery to mammalian cells. Curr Opin Biotechnol. 1998 Oct;9(5):480–485. doi: 10.1016/s0958-1669(98)80033-5. [DOI] [PubMed] [Google Scholar]
  31. Seddon J. M., Templer R. H., Warrender N. A., Huang Z., Cevc G., Marsh D. Phosphatidylcholine-fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (H(II)) phases. Biochim Biophys Acta. 1997 Jul 5;1327(1):131–147. doi: 10.1016/s0005-2736(97)00047-3. [DOI] [PubMed] [Google Scholar]
  32. Silvius J. R. Anomalous mixing of zwitterionic and anionic phospholipids with double-chain cationic amphiphiles in lipid bilayers. Biochim Biophys Acta. 1991 Nov 18;1070(1):51–59. doi: 10.1016/0005-2736(91)90145-x. [DOI] [PubMed] [Google Scholar]
  33. Sorgi F. L., Bhattacharya S., Huang L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther. 1997 Sep;4(9):961–968. doi: 10.1038/sj.gt.3300484. [DOI] [PubMed] [Google Scholar]
  34. Templeton N. S., Lasic D. D. New directions in liposome gene delivery. Mol Biotechnol. 1999 Apr;11(2):175–180. doi: 10.1007/BF02915810. [DOI] [PubMed] [Google Scholar]
  35. Williams W. P., Selstam E., Brain T. X-ray diffraction studies of the structural organisation of prolamellar bodies isolated from Zea mays. FEBS Lett. 1998 Jan 30;422(2):252–254. doi: 10.1016/s0014-5793(98)00019-2. [DOI] [PubMed] [Google Scholar]
  36. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  37. Zabner J., Fasbender A. J., Moninger T., Poellinger K. A., Welsh M. J. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995 Aug 11;270(32):18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
  38. Zuidam N. J., Barenholz Y. Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta. 1998 Jan 5;1368(1):115–128. doi: 10.1016/s0005-2736(97)00187-9. [DOI] [PubMed] [Google Scholar]
  39. de Kruijff B., Rietveld A., Telders N., Vaandrager B. Molecular aspects of the bilayer stabilization induced by poly(L-lysines) of varying size in cardiolipin liposomes. Biochim Biophys Acta. 1985 Nov 7;820(2):295–304. doi: 10.1016/0005-2736(85)90124-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES