Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):45–68. doi: 10.1016/S0006-3495(01)75994-2

Models of motor-assisted transport of intracellular particles.

D A Smith 1, R M Simmons 1
PMCID: PMC1301213  PMID: 11159382

Abstract

One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks of actin filaments and microtubules coexist and motors for both types of filament are implicated.

Full Text

The Full Text of this article is available as a PDF (478.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Bray D. Rapid transport of foreign particles microinjected into crab axons. Nature. 1983 Jun 23;303(5919):718–720. doi: 10.1038/303718a0. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Metuzals J., Tasaki I., Brady S. T., Gilbert S. P. Fast axonal transport in squid giant axon. Science. 1982 Dec 10;218(4577):1127–1129. doi: 10.1126/science.6183744. [DOI] [PubMed] [Google Scholar]
  3. Baas P. W., Yu W. A composite model for establishing the microtubule arrays of the neuron. Mol Neurobiol. 1996 Apr;12(2):145–161. doi: 10.1007/BF02740651. [DOI] [PubMed] [Google Scholar]
  4. Breuer A. C., Eagles P. A., Lynn M. P., Atkinson M. B., Gilbert S. P., Weber L., Leatherman J., Hopkins J. M. Long-term analysis of organelle translocation in isolated axoplasm of Myxicola infundibulum. Cell Motil Cytoskeleton. 1988;10(3):391–399. doi: 10.1002/cm.970100306. [DOI] [PubMed] [Google Scholar]
  5. Bridgman P. C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J Cell Biol. 1999 Sep 6;146(5):1045–1060. doi: 10.1083/jcb.146.5.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buchner K., Seitz-Tutter D., Schönitzer K., Weiss D. G. A quantitative study of anterograde and retrograde axonal transport of exogenous proteins in olfactory nerve C-fibers. Neuroscience. 1987 Aug;22(2):697–707. doi: 10.1016/0306-4522(87)90366-6. [DOI] [PubMed] [Google Scholar]
  7. Cheney R. E., O'Shea M. K., Heuser J. E., Coelho M. V., Wolenski J. S., Espreafico E. M., Forscher P., Larson R. E., Mooseker M. S. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell. 1993 Oct 8;75(1):13–23. doi: 10.1016/S0092-8674(05)80080-7. [DOI] [PubMed] [Google Scholar]
  8. Cooper P. D., Smith R. S. The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J Physiol. 1974 Oct;242(1):77–97. doi: 10.1113/jphysiol.1974.sp010695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dayel M. J., Hom E. F., Verkman A. S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys J. 1999 May;76(5):2843–2851. doi: 10.1016/S0006-3495(99)77438-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De La Cruz E. M., Wells A. L., Rosenfeld S. S., Ostap E. M., Sweeney H. L. The kinetic mechanism of myosin V. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13726–13731. doi: 10.1073/pnas.96.24.13726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans L. L., Bridgman P. C. Particles move along actin filament bundles in nerve growth cones. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10954–10958. doi: 10.1073/pnas.92.24.10954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans L. L., Lee A. J., Bridgman P. C., Mooseker M. S. Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci. 1998 Jul 30;111(Pt 14):2055–2066. doi: 10.1242/jcs.111.14.2055. [DOI] [PubMed] [Google Scholar]
  13. Galbraith J. A., Reese T. S., Schlief M. L., Gallant P. E. Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11589–11594. doi: 10.1073/pnas.96.20.11589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hackney D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature. 1995 Oct 5;377(6548):448–450. doi: 10.1038/377448a0. [DOI] [PubMed] [Google Scholar]
  15. Hannon R., Richards E. G., Gould H. J. Facilitated diffusion of a DNA binding protein on chromatin. EMBO J. 1986 Dec 1;5(12):3313–3319. doi: 10.1002/j.1460-2075.1986.tb04645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hayden J. H., Allen R. D., Goldman R. D. Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil. 1983;3(1):1–19. doi: 10.1002/cm.970030102. [DOI] [PubMed] [Google Scholar]
  17. Heidemann S. R., Hamborg M. A., Thomas S. J., Song B., Lindley S., Chu D. Spatial organization of axonal microtubules. J Cell Biol. 1984 Oct;99(4 Pt 1):1289–1295. doi: 10.1083/jcb.99.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hou L., Lanni F., Luby-Phelps K. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm. Biophys J. 1990 Jul;58(1):31–43. doi: 10.1016/S0006-3495(90)82351-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Janson L. W., Ragsdale K., Luby-Phelps K. Mechanism and size cutoff for steric exclusion from actin-rich cytoplasmic domains. Biophys J. 1996 Sep;71(3):1228–1234. doi: 10.1016/S0006-3495(96)79367-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kelleher J. F., Titus M. A. Intracellular motility: how can we all work together? Curr Biol. 1998 May 21;8(11):R394–R397. doi: 10.1016/s0960-9822(98)70246-5. [DOI] [PubMed] [Google Scholar]
  22. Koles Z. J., McLeod K. D., Smith R. S. A study of the motion of organelles which undergo retrograde and anterograde rapid axonal transport in Xenopus. J Physiol. 1982 Jul;328:469–484. doi: 10.1113/jphysiol.1982.sp014278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuznetsov S. A., Langford G. M., Weiss D. G. Actin-dependent organelle movement in squid axoplasm. Nature. 1992 Apr 23;356(6371):722–725. doi: 10.1038/356722a0. [DOI] [PubMed] [Google Scholar]
  24. Kuznetsov S. A., Rivera D. T., Severin F. F., Weiss D. G., Langford G. M. Movement of axoplasmic organelles on actin filaments from skeletal muscle. Cell Motil Cytoskeleton. 1994;28(3):231–242. doi: 10.1002/cm.970280306. [DOI] [PubMed] [Google Scholar]
  25. Lambert J., Vancoillie G., Naeyaert J. M. Molecular motors and their role in pigmentation. Cell Mol Biol (Noisy-le-grand) 1999 Nov;45(7):905–918. [PubMed] [Google Scholar]
  26. Langford G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol. 1995 Feb;7(1):82–88. doi: 10.1016/0955-0674(95)80048-4. [DOI] [PubMed] [Google Scholar]
  27. Mehta A. D., Rock R. S., Rief M., Spudich J. A., Mooseker M. S., Cheney R. E. Myosin-V is a processive actin-based motor. Nature. 1999 Aug 5;400(6744):590–593. doi: 10.1038/23072. [DOI] [PubMed] [Google Scholar]
  28. Morris R. L., Hollenbeck P. J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol. 1995 Dec;131(5):1315–1326. doi: 10.1083/jcb.131.5.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Olveczky B. P., Verkman A. S. Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J. 1998 May;74(5):2722–2730. doi: 10.1016/S0006-3495(98)77978-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Provance D. W., Jr, McDowall A., Marko M., Luby-Phelps K. Cytoarchitecture of size-excluding compartments in living cells. J Cell Sci. 1993 Oct;106(Pt 2):565–577. doi: 10.1242/jcs.106.2.565. [DOI] [PubMed] [Google Scholar]
  31. Provance D. W., Jr, Wei M., Ipe V., Mercer J. A. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14554–14558. doi: 10.1073/pnas.93.25.14554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rodionov V. I., Hope A. J., Svitkina T. M., Borisy G. G. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr Biol. 1998 Jan 29;8(3):165–168. doi: 10.1016/s0960-9822(98)70064-8. [DOI] [PubMed] [Google Scholar]
  33. Rogers S. L., Gelfand V. I. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr Biol. 1998 Jan 29;8(3):161–164. doi: 10.1016/s0960-9822(98)70063-6. [DOI] [PubMed] [Google Scholar]
  34. Rogers S. L., Tint I. S., Fanapour P. C., Gelfand V. I. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3720–3725. doi: 10.1073/pnas.94.8.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schliwa M., Weber K., Porter K. R. Localization and organization of actin in melanophores. J Cell Biol. 1981 May;89(2):267–275. doi: 10.1083/jcb.89.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schnapp B. J., Reese T. S. Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1548–1552. doi: 10.1073/pnas.86.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schnapp B. J., Vale R. D., Sheetz M. P., Reese T. S. Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell. 1985 Feb;40(2):455–462. doi: 10.1016/0092-8674(85)90160-6. [DOI] [PubMed] [Google Scholar]
  38. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  39. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  40. Svoboda K., Block S. M. Force and velocity measured for single kinesin molecules. Cell. 1994 Jun 3;77(5):773–784. doi: 10.1016/0092-8674(94)90060-4. [DOI] [PubMed] [Google Scholar]
  41. Svoboda K., Mitra P. P., Block S. M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11782–11786. doi: 10.1073/pnas.91.25.11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
  43. Tabb J. S., Molyneaux B. J., Cohen D. L., Kuznetsov S. A., Langford G. M. Transport of ER vesicles on actin filaments in neurons by myosin V. J Cell Sci. 1998 Nov;111(Pt 21):3221–3234. doi: 10.1242/jcs.111.21.3221. [DOI] [PubMed] [Google Scholar]
  44. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell. 1985 Feb;40(2):449–454. doi: 10.1016/0092-8674(85)90159-x. [DOI] [PubMed] [Google Scholar]
  46. Wei Q., Wu X., Hammer J. A., 3rd The predominant defect in dilute melanocytes is in melanosome distribution and not cell shape, supporting a role for myosin V in melanosome transport. J Muscle Res Cell Motil. 1997 Oct;18(5):517–527. doi: 10.1023/a:1018659117569. [DOI] [PubMed] [Google Scholar]
  47. Weiss D. G., Keller F., Gulden J., Maile W. Towards a new classification of intracellular particle movements based on quantitative analyses. Cell Motil Cytoskeleton. 1986;6(2):128–135. doi: 10.1002/cm.970060210. [DOI] [PubMed] [Google Scholar]
  48. Winkelmann D. A., Bourdieu L., Ott A., Kinose F., Libchaber A. Flexibility of myosin attachment to surfaces influences F-actin motion. Biophys J. 1995 Jun;68(6):2444–2453. doi: 10.1016/S0006-3495(95)80426-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wittenberg B. A., Wittenberg J. B., Caldwell P. R. Role of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem. 1975 Dec 10;250(23):9038–9043. [PubMed] [Google Scholar]
  50. Wittenberg J. B. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem. 1966 Jan 10;241(1):104–114. [PubMed] [Google Scholar]
  51. Wolenski J. S., Cheney R. E., Mooseker M. S., Forscher P. In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. J Cell Sci. 1995 Apr;108(Pt 4):1489–1496. doi: 10.1242/jcs.108.4.1489. [DOI] [PubMed] [Google Scholar]
  52. Wu X., Bowers B., Rao K., Wei Q., Hammer JA Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol. 1998 Dec 28;143(7):1899–1918. doi: 10.1083/jcb.143.7.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wu X., Bowers B., Wei Q., Kocher B., Hammer J. A., 3rd Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J Cell Sci. 1997 Apr;110(Pt 7):847–859. doi: 10.1242/jcs.110.7.847. [DOI] [PubMed] [Google Scholar]
  54. Wyman J. Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem. 1966 Jan 10;241(1):115–121. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES