Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):254–270. doi: 10.1016/S0006-3495(01)76011-0

A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence.

L Chen 1, M L Johnson 1, R L Biltonen 1
PMCID: PMC1301230  PMID: 11159399

Abstract

A macroscopic model is presented to quantitatively describe lipid bilayer gel to fluid phase transitions. In this model, the Gibbs potential of the lipid bilayer is expressed in terms of a single order parameter q, the average chain orientational order parameter. The Gibbs potential is based on molecular mean-field and statistical mechanical calculations of inter and intrachain interactions. Chain-length and chain-asymmetry are incorporated into the Gibbs potential so that one equation provides an accurate description of mixed-chain phosphatidylcholines of a single class. Two general classes of lipids are studied in this work: lipid bilayers of partially or noninterdigitated gel phases, and bilayers of mixed interdigitated gel phases. The model parameters are obtained by fitting the transition temperature and enthalpy data of phosphatidylcholines to the model. The proposed model provides estimates for the transition temperature and enthalpy, van der Waals energy, number of gauche bonds, chain orientational order parameter, and bond rotational and excluded volume entropies, achieving excellent agreement with existing data obtained with various techniques.

Full Text

The Full Text of this article is available as a PDF (231.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boggs J. M., Mason J. T. Calorimetric and fatty acid spin label study of subgel and interdigitated gel phases formed by asymmetric phosphatidylcholines. Biochim Biophys Acta. 1986 Dec 16;863(2):231–242. doi: 10.1016/0005-2736(86)90263-4. [DOI] [PubMed] [Google Scholar]
  3. Bultmann T., Lin H. N., Wang Z. Q., Huang C. H. Thermotropic and mixing behavior of mixed-chain phosphatidylcholines with molecular weights identical with that of L-alpha-dipalmitoylphosphatidylcholine. Biochemistry. 1991 Jul 23;30(29):7194–7202. doi: 10.1021/bi00243a022. [DOI] [PubMed] [Google Scholar]
  4. Chen S. C., Sturtevant J. M. Thermotropic behavior of bilayers formed from mixed-chain phosphatidylcholines. Biochemistry. 1981 Feb 17;20(4):713–718. doi: 10.1021/bi00507a007. [DOI] [PubMed] [Google Scholar]
  5. Dibble A. R., Hinderliter A. K., Sando J. J., Biltonen R. L. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J. 1996 Oct;71(4):1877–1890. doi: 10.1016/S0006-3495(96)79387-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douliez J. P., Léonard A., Dufourc E. J. Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J. 1995 May;68(5):1727–1739. doi: 10.1016/S0006-3495(95)80350-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gil T., Ipsen J. H., Mouritsen O. G., Sabra M. C., Sperotto M. M., Zuckermann M. J. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):245–266. doi: 10.1016/s0304-4157(98)00022-7. [DOI] [PubMed] [Google Scholar]
  8. Halladay H. N., Stark R. E., Ali S., Bittman R. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine. Biophys J. 1990 Dec;58(6):1449–1461. doi: 10.1016/S0006-3495(90)82490-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hinderliter A. K., Almeida P. F., Biltonen R. L., Creutz C. E. Membrane domain formation by calcium-dependent, lipid-binding proteins: insights from the C2 motif. Biochim Biophys Acta. 1998 Dec 10;1448(2):227–235. doi: 10.1016/s0167-4889(98)00146-3. [DOI] [PubMed] [Google Scholar]
  10. Hinderliter A. K., Dibble A. R., Biltonen R. L., Sando J. J. Activation of protein kinase C by coexisting diacylglycerol-enriched and diacylglycerol-poor lipid domains. Biochemistry. 1997 May 20;36(20):6141–6148. doi: 10.1021/bi962715d. [DOI] [PubMed] [Google Scholar]
  11. Huang C. H., Li S., Lin H. N., Wang G. On the bilayer phase transition temperatures for monoenoic phosphatidylcholines and phosphatidylethanolamines and the interconversion between them. Arch Biochem Biophys. 1996 Oct 1;334(1):135–142. doi: 10.1006/abbi.1996.0438. [DOI] [PubMed] [Google Scholar]
  12. Huang C. Empirical estimation of the gel to liquid-crystalline phase transition temperatures for fully hydrated saturated phosphatidylcholines. Biochemistry. 1991 Jan 8;30(1):26–30. doi: 10.1021/bi00215a004. [DOI] [PubMed] [Google Scholar]
  13. Huang C., Li S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim Biophys Acta. 1999 Nov 16;1422(3):273–307. doi: 10.1016/s0005-2736(99)00099-1. [DOI] [PubMed] [Google Scholar]
  14. Huang C., Li S., Wang Z. Q., Lin H. N. Dependence of the bilayer phase transition temperatures on the structural parameters of phosphatidylcholines. Lipids. 1993 May;28(5):365–370. doi: 10.1007/BF02535931. [DOI] [PubMed] [Google Scholar]
  15. Huang C., Mason J. T., Levin I. W. Raman spectroscopic study of saturated mixed-chain phosphatidylcholine multilamellar dispersions. Biochemistry. 1983 May 24;22(11):2775–2780. doi: 10.1021/bi00280a028. [DOI] [PubMed] [Google Scholar]
  16. Huang C., Mason J. T. Structure and properties of mixed-chain phospholipid assemblies. Biochim Biophys Acta. 1986 Dec 22;864(3-4):423–470. doi: 10.1016/0304-4157(86)90005-5. [DOI] [PubMed] [Google Scholar]
  17. Huang C. Mixed-chain phospholipids and interdigitated bilayer systems. Klin Wochenschr. 1990 Feb 1;68(3):149–165. doi: 10.1007/BF01649079. [DOI] [PubMed] [Google Scholar]
  18. Huang C., Wang Z. Q., Lin H. N., Brumbaugh E. E. Calorimetric studies of fully hydrated phosphatidylcholines with highly asymmetric acyl chains. Biochim Biophys Acta. 1993 Feb 9;1145(2):298–310. doi: 10.1016/0005-2736(93)90303-h. [DOI] [PubMed] [Google Scholar]
  19. Huang C., Wang Z. Q., Lin H. N., Brumbaugh E. E., Li S. Interconversion of bilayer phase transition temperatures between phosphatidylethanolamines and phosphatidylcholines. Biochim Biophys Acta. 1994 Jan 3;1189(1):7–12. doi: 10.1016/0005-2736(94)90273-9. [DOI] [PubMed] [Google Scholar]
  20. Huang J., Swanson J. E., Dibble A. R., Hinderliter A. K., Feigenson G. W. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase. Biophys J. 1993 Feb;64(2):413–425. doi: 10.1016/S0006-3495(93)81382-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hui S. W., Mason J. T., Huang C. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1984 Nov 6;23(23):5570–5577. doi: 10.1021/bi00318a029. [DOI] [PubMed] [Google Scholar]
  22. Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
  23. Ichimori H., Hata T., Matsuki H., Kaneshina S. Barotropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain lengths. Biochim Biophys Acta. 1998 Nov 11;1414(1-2):165–174. doi: 10.1016/s0005-2736(98)00165-5. [DOI] [PubMed] [Google Scholar]
  24. Ipsen J. H., Jørgensen K., Mouritsen O. G. Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases. Biophys J. 1990 Nov;58(5):1099–1107. doi: 10.1016/S0006-3495(90)82452-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jerala R., Almeida P. F., Biltonen R. L. Simulation of the gel-fluid transition in a membrane composed of lipids with two connected acyl chains: application of a dimer-move step. Biophys J. 1996 Aug;71(2):609–615. doi: 10.1016/S0006-3495(96)79261-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jähnig F. Critical effects from lipid-protein interaction in membranes. I. Theoretical description. Biophys J. 1981 Nov;36(2):329–345. doi: 10.1016/S0006-3495(81)84735-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jørgensen K., Mouritsen O. G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J. 1995 Sep;69(3):942–954. doi: 10.1016/S0006-3495(95)79968-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Korlach J., Schwille P., Webb W. W., Feigenson G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koynova R., Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998 Jun 29;1376(1):91–145. doi: 10.1016/s0304-4157(98)00006-9. [DOI] [PubMed] [Google Scholar]
  30. Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
  31. Lewis R. N., McElhaney R. N., Monck M. A., Cullis P. R. Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that form mixed-interdigitated gel phases: Fourier transform infrared and 2H NMR spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state. Biophys J. 1994 Jul;67(1):197–207. doi: 10.1016/S0006-3495(94)80470-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lewis R. N., McElhaney R. N., Osterberg F., Gruner S. M. Enigmatic thermotropic phase behavior of highly asymmetric mixed-chain phosphatidylcholines that form mixed-interdigitated gel phases. Biophys J. 1994 Jan;66(1):207–216. doi: 10.1016/S0006-3495(94)80764-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Li S., Wang Z. Q., Lin H. N., Huang C. Energy-minimized structures and packing states of a homologous series of mixed-chain phosphatidylcholines: a molecular mechanics study on the diglyceride moieties. Biophys J. 1993 Oct;65(4):1415–1428. doi: 10.1016/S0006-3495(93)81205-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Li S., Wang Z. Q., Lin H. N., Huang C. On the main phase transition temperatures of highly asymmetric mixed-chain phosphatidylcholines. Biochim Biophys Acta. 1994 Sep 14;1194(2):271–280. doi: 10.1016/0005-2736(94)90309-3. [DOI] [PubMed] [Google Scholar]
  35. Lin H. N., Wang Z. Q., Huang C. H. Differential scanning calorimetry study of mixed-chain phosphatidylcholines with a common molecular weight identical with diheptadecanoylphosphatidylcholine. Biochemistry. 1990 Jul 31;29(30):7063–7072. doi: 10.1021/bi00482a017. [DOI] [PubMed] [Google Scholar]
  36. Lin H. N., Wang Z. Q., Huang C. H. The influence of acyl chain-length asymmetry on the phase transition parameters of phosphatidylcholine dispersions. Biochim Biophys Acta. 1991 Aug 5;1067(1):17–28. doi: 10.1016/0005-2736(91)90021-y. [DOI] [PubMed] [Google Scholar]
  37. Marcelja S. Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim Biophys Acta. 1974 Oct 29;367(2):165–176. doi: 10.1016/0005-2736(74)90040-6. [DOI] [PubMed] [Google Scholar]
  38. Marsh D. Analysis of the bilayer phase transition temperatures of phosphatidylcholines with mixed chains. Biophys J. 1992 Apr;61(4):1036–1040. doi: 10.1016/S0006-3495(92)81911-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Marsh D. Thermodynamic analysis of chain-melting transition temperatures for monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position. Biophys J. 1999 Aug;77(2):953–963. doi: 10.1016/S0006-3495(99)76946-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Marsh D., Watts A., Smith I. C. Dynamic structure and phase behavior of dimyristoylphosphatidylethanolamine bilayers studied by deuterium nuclear magnetic resonance. Biochemistry. 1983 Jun 7;22(12):3023–3026. doi: 10.1021/bi00281a036. [DOI] [PubMed] [Google Scholar]
  41. Mason J. T., Huang C., Biltonen R. L. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1981 Oct 13;20(21):6086–6092. doi: 10.1021/bi00524a026. [DOI] [PubMed] [Google Scholar]
  42. Mattai J., Sripada P. K., Shipley G. G. Mixed-chain phosphatidylcholine bilayers: structure and properties. Biochemistry. 1987 Jun 16;26(12):3287–3297. doi: 10.1021/bi00386a007. [DOI] [PubMed] [Google Scholar]
  43. McIntosh T. J., Simon S. A., Ellington J. C., Jr, Porter N. A. New structural model for mixed-chain phosphatidylcholine bilayers. Biochemistry. 1984 Aug 28;23(18):4038–4044. doi: 10.1021/bi00313a005. [DOI] [PubMed] [Google Scholar]
  44. McMullen T. P., Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):119–134. doi: 10.1016/s0005-2736(98)00214-4. [DOI] [PubMed] [Google Scholar]
  45. Melchior D. L., Steim J. M. Thermotropic transitions in biomembranes. Annu Rev Biophys Bioeng. 1976;5:205–238. doi: 10.1146/annurev.bb.05.060176.001225. [DOI] [PubMed] [Google Scholar]
  46. Mendelsohn R., Davies M. A., Brauner J. W., Schuster H. F., Dluhy R. A. Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biochemistry. 1989 Oct 31;28(22):8934–8939. doi: 10.1021/bi00448a037. [DOI] [PubMed] [Google Scholar]
  47. Meraldi J. P., Schlitter J. A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. A. Theory. Biochim Biophys Acta. 1981 Jul 20;645(2):183–192. doi: 10.1016/0005-2736(81)90189-9. [DOI] [PubMed] [Google Scholar]
  48. Meraldi J. P., Schlitter J. A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. B. Dipalmitoyl-3-sn-phosphatidylcholine. Biochim Biophys Acta. 1981 Jul 20;645(2):193–210. doi: 10.1016/0005-2736(81)90190-5. [DOI] [PubMed] [Google Scholar]
  49. Morrow M. R., Whitehead J. P., Lu D. Chain-length dependence of lipid bilayer properties near the liquid crystal to gel phase transition. Biophys J. 1992 Jul;63(1):18–27. doi: 10.1016/S0006-3495(92)81579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Nagle J. F. Area/lipid of bilayers from NMR. Biophys J. 1993 May;64(5):1476–1481. doi: 10.1016/S0006-3495(93)81514-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Owicki J. C., Springgate M. W., McConnell H. M. Theoretical study of protein--lipid interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1616–1619. doi: 10.1073/pnas.75.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  54. Petrache H. I., Tu K., Nagle J. F. Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys J. 1999 May;76(5):2479–2487. doi: 10.1016/S0006-3495(99)77403-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pink D. A., Green T. J., Chapman D. Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry. 1980 Jan 22;19(2):349–356. doi: 10.1021/bi00543a016. [DOI] [PubMed] [Google Scholar]
  56. Sabra M. C., Mouritsen O. G. Steady-state compartmentalization of lipid membranes by active proteins. Biophys J. 1998 Feb;74(2 Pt 1):745–752. doi: 10.1016/S0006-3495(98)73999-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schindler H., Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. Biochemistry. 1975 Jun 3;14(11):2283–2287. doi: 10.1021/bi00682a001. [DOI] [PubMed] [Google Scholar]
  58. Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
  59. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  60. Shah J., Sripada P. K., Shipley G. G. Structure and properties of mixed-chain phosphatidylcholine bilayers. Biochemistry. 1990 May 1;29(17):4254–4262. doi: 10.1021/bi00469a030. [DOI] [PubMed] [Google Scholar]
  61. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  62. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  63. Stümpel J., Eibl H., Nicksch A. X-ray analysis and calorimetry on phosphatidylcholine model membranes. The influence of length and position of acyl chains upon structure and phase behaviour. Biochim Biophys Acta. 1983 Jan 19;727(2):246–254. doi: 10.1016/0005-2736(83)90410-8. [DOI] [PubMed] [Google Scholar]
  64. Sugár I. P., Monticelli G. Interrelationships between the phase diagrams of the two-component phospholipid bilayers. Biophys J. 1985 Aug;48(2):283–288. doi: 10.1016/S0006-3495(85)83781-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sugár I. P., Thompson T. E., Biltonen R. L. Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures. Biophys J. 1999 Apr;76(4):2099–2110. doi: 10.1016/S0006-3495(99)77366-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Thompson T. E., Sankaram M. B., Biltonen R. L., Marsh D., Vaz W. L. Effects of domain structure on in-plane reactions and interactions. Mol Membr Biol. 1995 Jan-Mar;12(1):157–162. doi: 10.3109/09687689509038512. [DOI] [PubMed] [Google Scholar]
  67. Tu K., Tobias D. J., Klein M. L. Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophys J. 1995 Dec;69(6):2558–2562. doi: 10.1016/S0006-3495(95)80126-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wang Z. Q., Lin H. N., Huang C. H. Differential scanning calorimetric study of a homologous series of fully hydrated saturated mixed-chain C(X):C(X + 6) phosphatidylcholines. Biochemistry. 1990 Jul 31;29(30):7072–7076. doi: 10.1021/bi00482a018. [DOI] [PubMed] [Google Scholar]
  69. Xu H., Huang C. H. Scanning calorimetric study of fully hydrated asymmetric phosphatidylcholines with one acyl chain twice as long as the other. Biochemistry. 1987 Feb 24;26(4):1036–1043. doi: 10.1021/bi00378a009. [DOI] [PubMed] [Google Scholar]
  70. Yellin N., Levin I. W. Hydrocarbon trans-gauche isomerization in phospholipid bilayer gel assemblies. Biochemistry. 1977 Feb 22;16(4):642–647. doi: 10.1021/bi00623a014. [DOI] [PubMed] [Google Scholar]
  71. Zhu T., Caffrey M. Thermodynamic, thermomechanical, and structural properties of a hydrated asymmetric phosphatidylcholine. Biophys J. 1993 Aug;65(2):939–954. doi: 10.1016/S0006-3495(93)81108-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES