Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):443–454. doi: 10.1016/S0006-3495(01)76027-4

Fourier transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines.

J Ruiz-Chica 1, M A Medina 1, F Sánchez-Jiménez 1, F J Ramírez 1
PMCID: PMC1301246  PMID: 11159415

Abstract

Biogenic polyamines putrescine, spermidine, and spermine are essential molecules for proliferation in all living organisms. Direct interaction of polyamines with nucleic acids has been proposed in the past based on a series of experimental evidences, such as precipitation, thermal denaturation, or protection. However, binding between polyamines and nucleic acids is not clearly explained. Several interaction models have also been proposed, although they do not always agree with one another. In the present work, we make use of the Raman spectroscopy to extend our knowledge about polyamine-DNA interaction. Raman spectra of highly polymerized calf-thymus DNA at different polyamine concentrations, ranging from 1 to 50 mM, have been studied for putrescine, spermidine, and spermine. Both natural and heavy water were used as solvents. Difference Raman spectra have been computed by subtracting the sum of the separated component spectra from the experimental spectra of the complexes. The analysis of the Raman data has supported the existence of structural specificities in the interactions, at least under our experimental conditions. These specificities lead to preferential bindings through the DNA minor groove for putrescine and spermidine, whereas spermine binds by the major groove. On the other hand, spermine and spermidine present interstrand interactions, whereas putrescine presents intrastrand interactions in addition to exo-groove interactions by phosphate moieties.

Full Text

The Full Text of this article is available as a PDF (177.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasson B., Nordenskiöld L., Braunlin W. H., Schultz J., Stilbs P. Localized interaction of the polyamine methylspermidine with double-helical DNA as monitored by 1H NMR self-diffusion measurements. Biochemistry. 1993 Jan 26;32(3):961–967. doi: 10.1021/bi00054a029. [DOI] [PubMed] [Google Scholar]
  2. Basu H. S., Schwietert H. C., Feuerstein B. G., Marton L. J. Effects of variation in the structure of spermine on the association with DNA and the induction of DNA conformational changes. Biochem J. 1990 Jul 15;269(2):329–334. doi: 10.1042/bj2690329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benevides J. M., Stow P. L., Ilag L. L., Incardona N. L., Thomas G. J., Jr Differences in secondary structure between packaged and unpackaged single-stranded DNA of bacteriophage phi X174 determined by Raman spectroscopy: a model for phi X174 DNA packaging. Biochemistry. 1991 May 21;30(20):4855–4863. doi: 10.1021/bi00234a004. [DOI] [PubMed] [Google Scholar]
  4. Benevides J. M., Thomas G. J., Jr Dependence of purine 8C-H exchange on nucleic acid conformation and base-pairing geometry: a dynamic probe of DNA and RNA secondary structures. Biopolymers. 1985 Apr;24(4):667–682. doi: 10.1002/bip.360240407. [DOI] [PubMed] [Google Scholar]
  5. Braunlin W. H., Strick T. J., Record M. T., Jr Equilibrium dialysis studies of polyamine binding to DNA. Biopolymers. 1982 Jul;21(7):1301–1314. doi: 10.1002/bip.360210704. [DOI] [PubMed] [Google Scholar]
  6. Chiriboga L., Xie P., Yee H., Vigorita V., Zarou D., Zakim D., Diem M. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy. 1998;4(1):47–53. doi: 10.1002/(SICI)1520-6343(1998)4:1%3C47::AID-BSPY5%3E3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  7. Douki T., Bretonniere Y., Cadet J. Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res. 2000 Jan;153(1):29–35. doi: 10.1667/0033-7587(2000)153[0029:parido]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  8. Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
  9. Egli M., Williams L. D., Gao Q., Rich A. Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution. Biochemistry. 1991 Dec 3;30(48):11388–11402. doi: 10.1021/bi00112a005. [DOI] [PubMed] [Google Scholar]
  10. Erfurth S. C., Peticolas W. L. Melting and premelting phenomenon in DNA by laser Raman scattering. Biopolymers. 1975 Feb;14(2):247–264. doi: 10.1002/bip.1975.360140202. [DOI] [PubMed] [Google Scholar]
  11. Feuerstein B. G., Pattabiraman N., Marton L. J. Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 1990 Mar 11;18(5):1271–1282. doi: 10.1093/nar/18.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feuerstein B. G., Pattabiraman N., Marton L. J. Spermine-DNA interactions: a theoretical study. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5948–5952. doi: 10.1073/pnas.83.16.5948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghomi M., Letellier R., Liquier J., Taillandier E. Interpretation of DNA vibrational spectra by normal coordinate analysis. Int J Biochem. 1990;22(7):691–699. doi: 10.1016/0020-711x(90)90003-l. [DOI] [PubMed] [Google Scholar]
  14. Gosule L. C., Schellman J. A. Compact form of DNA induced by spermidine. Nature. 1976 Jan 29;259(5541):333–335. doi: 10.1038/259333a0. [DOI] [PubMed] [Google Scholar]
  15. Ha H. C., Sirisoma N. S., Kuppusamy P., Zweier J. L., Woster P. M., Casero R. A., Jr The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140–11145. doi: 10.1073/pnas.95.19.11140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ha H. C., Woster P. M., Yager J. D., Casero R. A., Jr The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11557–11562. doi: 10.1073/pnas.94.21.11557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ha H. C., Yager J. D., Woster P. A., Casero R. A., Jr Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem Biophys Res Commun. 1998 Mar 6;244(1):298–303. doi: 10.1006/bbrc.1998.8258. [DOI] [PubMed] [Google Scholar]
  18. Hayashi S., Murakami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci. 1996 Jan;21(1):27–30. [PubMed] [Google Scholar]
  19. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  20. Jain S., Zon G., Sundaralingam M. Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC). Biochemistry. 1989 Mar 21;28(6):2360–2364. doi: 10.1021/bi00432a002. [DOI] [PubMed] [Google Scholar]
  21. Jänne J., Alhonen L., Leinonen P. Polyamines: from molecular biology to clinical applications. Ann Med. 1991 Aug;23(3):241–259. doi: 10.3109/07853899109148056. [DOI] [PubMed] [Google Scholar]
  22. Krafft C., Hinrichs W., Orth P., Saenger W., Welfle H. Raman spectroscopic analysis of Tet repressor-operator DNA interaction in deuterium oxide. Cell Mol Biol (Noisy-le-grand) 1998 Feb;44(1):239–250. [PubMed] [Google Scholar]
  23. Lord R. C., Thomas G. J., Jr Raman studies of nucleic acids. II. Aqueous purine and pyrimidine mixtures. Biochim Biophys Acta. 1967 Jun 20;142(1):1–11. [PubMed] [Google Scholar]
  24. Marquet R., Houssier C. Different binding modes of spermine to A-T and G-C base pairs modulate the bending and stiffening of the DNA double helix. J Biomol Struct Dyn. 1988 Oct;6(2):235–246. doi: 10.1080/07391102.1988.10507710. [DOI] [PubMed] [Google Scholar]
  25. McMurry L. M., Algranati I. D. Effect of polyamines on translation fidelity in vivo. Eur J Biochem. 1986 Mar 3;155(2):383–390. doi: 10.1111/j.1432-1033.1986.tb09502.x. [DOI] [PubMed] [Google Scholar]
  26. Neault J. F., Naoui M., Manfait M., Tajmir-Riahi H. A. Aspirin-DNA interaction studied by FTIR and laser Raman difference spectroscopy. FEBS Lett. 1996 Mar 11;382(1-2):26–30. doi: 10.1016/0014-5793(96)00093-2. [DOI] [PubMed] [Google Scholar]
  27. Pattabiraman N., Langridge R., Kollman P. A. An iterative approach to placing counterions around DNA. J Biomol Struct Dyn. 1984 Jun;1(6):1525–1533. doi: 10.1080/07391102.1984.10507536. [DOI] [PubMed] [Google Scholar]
  28. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  29. Pelta J., Livolant F., Sikorav J. L. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem. 1996 Mar 8;271(10):5656–5662. doi: 10.1074/jbc.271.10.5656. [DOI] [PubMed] [Google Scholar]
  30. Peticolas W. L. Application of Raman spectroscopy to biological macromolecules. Biochimie. 1975;57(4):417–428. doi: 10.1016/s0300-9084(75)80328-2. [DOI] [PubMed] [Google Scholar]
  31. Prescott B., Steinmetz W., Thomas G. J., Jr Characterization of DNA structures by laser Raman spectroscopy. Biopolymers. 1984 Feb;23(2):235–256. doi: 10.1002/bip.360230206. [DOI] [PubMed] [Google Scholar]
  32. Puppels G. J., Otto C., Greve J., Robert-Nicoud M., Arndt-Jovin D. J., Jovin T. M. Raman microspectroscopic study of low-pH-induced changes in DNA structure of polytene chromosomes. Biochemistry. 1994 Mar 22;33(11):3386–3395. doi: 10.1021/bi00177a032. [DOI] [PubMed] [Google Scholar]
  33. Raspaud E., Olvera de la Cruz M., Sikorav J. L., Livolant F. Precipitation of DNA by polyamines: a polyelectrolyte behavior. Biophys J. 1998 Jan;74(1):381–393. doi: 10.1016/S0006-3495(98)77795-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rouzina I., Bloomfield V. A. DNA bending by small, mobile multivalent cations. Biophys J. 1998 Jun;74(6):3152–3164. doi: 10.1016/S0006-3495(98)78021-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sarhan S., Seiler N. On the subcellular localization of the polyamines. Biol Chem Hoppe Seyler. 1989 Dec;370(12):1279–1284. doi: 10.1515/bchm3.1989.370.2.1279. [DOI] [PubMed] [Google Scholar]
  36. Suwalsky M., Traub W., Shmueli U., Subirana J. A. An X-ray study of the interaction of DNA with spermine. J Mol Biol. 1969 Jun 14;42(2):363–373. doi: 10.1016/0022-2836(69)90049-7. [DOI] [PubMed] [Google Scholar]
  37. Sy D., Hugot S., Savoye C., Ruiz S., Charlier M., Spotheim-Maurizot M. Radioprotection of DNA by spermine: a molecular modelling approach. Int J Radiat Biol. 1999 Aug;75(8):953–961. doi: 10.1080/095530099139719. [DOI] [PubMed] [Google Scholar]
  38. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  39. Thomas T. J., Bloomfield V. A. Ionic and structural effects on the thermal helix-coil transition of DNA complexed with natural and synthetic polyamines. Biopolymers. 1984 Jul;23(7):1295–1306. doi: 10.1002/bip.360230713. [DOI] [PubMed] [Google Scholar]
  40. Thomas T., Kulkarni G. D., Gallo M. A., Greenfield N., Lewis J. S., Shirahata A., Thomas T. J. Effects of natural and synthetic polyamines on the conformation of an oligodeoxyribonucleotide with the estrogen response element. Nucleic Acids Res. 1997 Jun 15;25(12):2396–2402. doi: 10.1093/nar/25.12.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Warters R. L., Newton G. L., Olive P. L., Fahey R. C. Radioprotection of human cell nuclear DNA by polyamines: radiosensitivity of chromatin is influenced by tightly bound spermine. Radiat Res. 1999 Mar;151(3):354–362. [PubMed] [Google Scholar]
  42. Williams L. D., Frederick C. A., Ughetto G., Rich A. Ternary interactions of spermine with DNA: 4'-epiadriamycin and other DNA: anthracycline complexes. Nucleic Acids Res. 1990 Sep 25;18(18):5533–5541. doi: 10.1093/nar/18.18.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES