Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):480–490. doi: 10.1016/S0006-3495(01)76030-4

A self-consistent knowledge-based approach to protein design.

A Rossi 1, C Micheletti 1, F Seno 1, A Maritan 1
PMCID: PMC1301249  PMID: 11159418

Abstract

A simple and very efficient protein design strategy is proposed by developing some recently introduced theoretical tools which have been successfully applied to exactly solvable protein models. The design approach is implemented by using three amino acid classes and it is based on the minimization of an appropriate energy function. For a given native state the results of the design procedure are compared, through a statistical analysis, with the properties of an ensemble of sequences folding in the same conformation. If the success rate is computed on those sites designed with high confidence, it can be as high as 80%. The method is also able to identify key sites for the folding process: results for 2ci2 and barnase are in very good agreement with experimental results.

Full Text

The Full Text of this article is available as a PDF (306.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crippen G. M. Prediction of protein folding from amino acid sequence over discrete conformation spaces. Biochemistry. 1991 Apr 30;30(17):4232–4237. doi: 10.1021/bi00231a018. [DOI] [PubMed] [Google Scholar]
  4. Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
  5. Deutsch JM, Kurosky T. New algorithm for protein design. Phys Rev Lett. 1996 Jan 8;76(2):323–326. doi: 10.1103/PhysRevLett.76.323. [DOI] [PubMed] [Google Scholar]
  6. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fersht A. R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10869–10873. doi: 10.1073/pnas.92.24.10869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang E. S., Koehl P., Levitt M., Pappu R. V., Ponder J. W. Accuracy of side-chain prediction upon near-native protein backbones generated by Ab initio folding methods. Proteins. 1998 Nov 1;33(2):204–217. doi: 10.1002/(sici)1097-0134(19981101)33:2<204::aid-prot5>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  9. Itzhaki L. S., Otzen D. E., Fersht A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol. 1995 Nov 24;254(2):260–288. doi: 10.1006/jmbi.1995.0616. [DOI] [PubMed] [Google Scholar]
  10. Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
  11. Maiorov V. N., Crippen G. M. Contact potential that recognizes the correct folding of globular proteins. J Mol Biol. 1992 Oct 5;227(3):876–888. doi: 10.1016/0022-2836(92)90228-c. [DOI] [PubMed] [Google Scholar]
  12. Maritan A., Micheletti C., Banavar J. R. Role of secondary motifs in fast folding polymers: a dynamical variational principle. Phys Rev Lett. 2000 Mar 27;84(13):3009–3012. doi: 10.1103/PhysRevLett.84.3009. [DOI] [PubMed] [Google Scholar]
  13. Maritan A., Micheletti C., Trovato A., Banavar J. R. Optimal shapes of compact strings. Nature. 2000 Jul 20;406(6793):287–290. doi: 10.1038/35018538. [DOI] [PubMed] [Google Scholar]
  14. Morrissey M. P., Shakhnovich E. I. Design of proteins with selected thermal properties. Fold Des. 1996;1(5):391–405. doi: 10.1016/S1359-0278(96)00054-5. [DOI] [PubMed] [Google Scholar]
  15. Pabo C. Molecular technology. Designing proteins and peptides. Nature. 1983 Jan 20;301(5897):200–200. doi: 10.1038/301200a0. [DOI] [PubMed] [Google Scholar]
  16. Park B., Levitt M. Energy functions that discriminate X-ray and near native folds from well-constructed decoys. J Mol Biol. 1996 May 3;258(2):367–392. doi: 10.1006/jmbi.1996.0256. [DOI] [PubMed] [Google Scholar]
  17. Quinn T. P., Tweedy N. B., Williams R. W., Richardson J. S., Richardson D. C. Betadoublet: de novo design, synthesis, and characterization of a beta-sandwich protein. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8747–8751. doi: 10.1073/pnas.91.19.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  19. Seno F., Maritan A., Banavar J. R. Interaction potentials for protein folding. Proteins. 1998 Feb 15;30(3):244–248. doi: 10.1002/(sici)1097-0134(19980215)30:3<244::aid-prot4>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  20. Seno F, Vendruscolo M, Maritan A, Banavar JR. Optimal Protein Design Procedure. Phys Rev Lett. 1996 Aug 26;77(9):1901–1904. doi: 10.1103/PhysRevLett.77.1901. [DOI] [PubMed] [Google Scholar]
  21. Serrano L., Kellis J. T., Jr, Cann P., Matouschek A., Fersht A. R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol. 1992 Apr 5;224(3):783–804. doi: 10.1016/0022-2836(92)90562-x. [DOI] [PubMed] [Google Scholar]
  22. Shakhnovich E. I., Gutin A. M. A new approach to the design of stable proteins. Protein Eng. 1993 Nov;6(8):793–800. doi: 10.1093/protein/6.8.793. [DOI] [PubMed] [Google Scholar]
  23. Shakhnovich E., Abkevich V., Ptitsyn O. Conserved residues and the mechanism of protein folding. Nature. 1996 Jan 4;379(6560):96–98. doi: 10.1038/379096a0. [DOI] [PubMed] [Google Scholar]
  24. Shakhnovich EI. Proteins with selected sequences fold into unique native conformation. Phys Rev Lett. 1994 Jun 13;72(24):3907–3910. doi: 10.1103/PhysRevLett.72.3907. [DOI] [PubMed] [Google Scholar]
  25. Street A. G., Mayo S. L. Computational protein design. Structure. 1999 May;7(5):R105–R109. doi: 10.1016/s0969-2126(99)80062-8. [DOI] [PubMed] [Google Scholar]
  26. Sun S., Brem R., Chan H. S., Dill K. A. Designing amino acid sequences to fold with good hydrophobic cores. Protein Eng. 1995 Dec;8(12):1205–1213. doi: 10.1093/protein/8.12.1205. [DOI] [PubMed] [Google Scholar]
  27. West M. W., Wang W., Patterson J., Mancias J. D., Beasley J. R., Hecht M. H. De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11211–11216. doi: 10.1073/pnas.96.20.11211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zou J., Saven J. G. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure. J Mol Biol. 2000 Feb 11;296(1):281–294. doi: 10.1006/jmbi.1999.3426. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES