Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):579–596. doi: 10.1016/S0006-3495(01)76039-0

Molecular dynamics study of peptide-bilayer adsorption.

C M Shepherd 1, K A Schaus 1, H J Vogel 1, A H Juffer 1
PMCID: PMC1301258  PMID: 11159427

Abstract

Two 6-ns simulations of the somatostatin analog sandostatin and a 1-palmityl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer are presented. In the first simulation, the peptide was placed in a region of bulk water density and allowed to spontaneously move toward and bind to the bilayer surface. An attractive force between the peptide and bilayer drove the binding process, which was opposed by a significant frictional force caused by the solvent (water). During the approach of the peptide toward the bilayer the area of the interacting surface between the species was inversely proportional to the distance between them, supporting the application of such a relationship in continuum calculations of peptide-bilayer binding free energies. In the second simulation, the N-terminus of the surface-bound peptide was deprotonated. Consistent with experiment, this strengthened interactions between the peptide and the bilayer. Details of both peptide-bilayer complexes, including the orientation, percent buried surface area, and orientation of the lipid headgroups are in good agreement with those obtained from experiment. The location of the different side chains in the bilayer is in direct correlation with an interfacial hydrophobicity scale developed using model peptides. The aromatic side chains of the Phe and Trp residues all lie flat with respect to the bilayer surface in both complexes. Changes in lipid and water ordering due to peptide binding suggest a possible domination of lipophobic over hydrophobic effects, as proposed by other workers. Where appropriate, peptide and lipid properties in the bound states are compared with separate simulations of sandostatin and the bilayer in water, respectively, so as to monitor the response of the system to the binding process.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Shaul A., Ben-Tal N., Honig B. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys J. 1996 Jul;71(1):130–137. doi: 10.1016/S0006-3495(96)79208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Tal N., Honig B., Miller C., McLaughlin S. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J. 1997 Oct;73(4):1717–1727. doi: 10.1016/S0006-3495(97)78203-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue. Biochemistry. 1990 Dec 11;29(49):10995–11000. doi: 10.1021/bi00501a018. [DOI] [PubMed] [Google Scholar]
  6. Beschiaschvili G., Seelig J. Peptide binding to lipid membranes. Spectroscopic studies on the insertion of a cyclic somatostatin analog into phospholipid bilayers. Biochim Biophys Acta. 1991 Jan 9;1061(1):78–84. doi: 10.1016/0005-2736(91)90270-i. [DOI] [PubMed] [Google Scholar]
  7. Capener C. E., Shrivastava I. H., Ranatunga K. M., Forrest L. R., Smith G. R., Sansom M. S. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J. 2000 Jun;78(6):2929–2942. doi: 10.1016/S0006-3495(00)76833-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colotto A., Martin I., Ruysschaert J. M., Sen A., Hui S. W., Epand R. M. Structural study of the interaction between the SIV fusion peptide and model membranes. Biochemistry. 1996 Jan 23;35(3):980–989. doi: 10.1021/bi951991+. [DOI] [PubMed] [Google Scholar]
  9. Damodaran K. V., Merz K. M., Jr, Gaber B. P. Interaction of small peptides with lipid bilayers. Biophys J. 1995 Oct;69(4):1299–1308. doi: 10.1016/S0006-3495(95)79997-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Damodaran K. V., Merz K. M., Jr, Gaber B. P. Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. Biochemistry. 1992 Aug 25;31(33):7656–7664. doi: 10.1021/bi00148a029. [DOI] [PubMed] [Google Scholar]
  11. Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
  12. Epand R. F., Macosko J. C., Russell C. J., Shin Y. K., Epand R. M. The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. J Mol Biol. 1999 Feb 19;286(2):489–503. doi: 10.1006/jmbi.1998.2500. [DOI] [PubMed] [Google Scholar]
  13. Epand R. M., Vogel H. J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):11–28. doi: 10.1016/s0005-2736(99)00198-4. [DOI] [PubMed] [Google Scholar]
  14. Evans R. W., Williams M. A., Tinoco J. Surface areas of 1-palmitoyl phosphatidylcholines and their interactions with cholesterol. Biochem J. 1987 Jul 15;245(2):455–462. doi: 10.1042/bj2450455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Forrest L. R., Kukol A., Arkin I. T., Tieleman D. P., Sansom M. S. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J. 2000 Jan;78(1):55–69. doi: 10.1016/s0006-3495(00)76572-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Forrest L. R., Tieleman D. P., Sansom M. S. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer. Biophys J. 1999 Apr;76(4):1886–1896. doi: 10.1016/s0006-3495(99)77347-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huang P., Loew G. H. Interaction of an amphiphilic peptide with a phospholipid bilayer surface by molecular dynamics simulation study. J Biomol Struct Dyn. 1995 Apr;12(5):937–956. doi: 10.1080/07391102.1995.10508789. [DOI] [PubMed] [Google Scholar]
  18. Hwang P. M., Vogel H. J. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76(2-3):235–246. doi: 10.1139/bcb-76-2-3-235. [DOI] [PubMed] [Google Scholar]
  19. Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
  20. Jacobs R. E., White S. H. Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: a simple model system for examining the protein-lipid interface. Biochemistry. 1986 May 6;25(9):2605–2612. doi: 10.1021/bi00357a049. [DOI] [PubMed] [Google Scholar]
  21. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  22. Juffer A. H., Eisenhaber F., Hubbard S. J., Walther D., Argos P. Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding. Protein Sci. 1995 Dec;4(12):2499–2509. doi: 10.1002/pro.5560041206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jähnig F. Thermodynamics and kinetics of protein incorporation into membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3691–3695. doi: 10.1073/pnas.80.12.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  25. King G. I., White S. H. Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys J. 1986 May;49(5):1047–1054. doi: 10.1016/S0006-3495(86)83733-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klassen R. B., Opella S. J. NMR studies of peptides and proteins associated with membranes. Methods Mol Biol. 1997;60:271–297. doi: 10.1385/0-89603-309-0:271. [DOI] [PubMed] [Google Scholar]
  27. Kothekar V. 260 ps molecular dynamics simulation of substance P with hydrated dimyristoyl phosphatidyl choline bilayer. J Biomol Struct Dyn. 1996 Feb;13(4):601–613. doi: 10.1080/07391102.1996.10508873. [DOI] [PubMed] [Google Scholar]
  28. Kothekar V., Mahajan K., Raha K., Gupta D. Molecular dynamics simulation of conformational flexibility of alamethicin fragments in aqueous and membranous environment. J Biomol Struct Dyn. 1996 Dec;14(3):303–316. doi: 10.1080/07391102.1996.10508126. [DOI] [PubMed] [Google Scholar]
  29. Lafleur M., Cullis P. R., Bloom M. Modulation of the orientational order profile of the lipid acyl chain in the L alpha phase. Eur Biophys J. 1990;19(2):55–62. doi: 10.1007/BF00185086. [DOI] [PubMed] [Google Scholar]
  30. Lindahl E., Edholm O. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J. 2000 Jul;79(1):426–433. doi: 10.1016/S0006-3495(00)76304-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Maurer R., Gaehwiler B. H., Buescher H. H., Hill R. C., Roemer D. Opiate antagonistic properties of an octapeptide somatostatin analog. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4815–4817. doi: 10.1073/pnas.79.15.4815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Melacini G., Zhu Q., Goodman M. Multiconformational NMR analysis of sandostatin (octreotide): equilibrium between beta-sheet and partially helical structures. Biochemistry. 1997 Feb 11;36(6):1233–1241. doi: 10.1021/bi962497o. [DOI] [PubMed] [Google Scholar]
  33. Opella S. J. NMR and membrane proteins. Nat Struct Biol. 1997 Oct;4 (Suppl):845–848. [PubMed] [Google Scholar]
  34. Persson S., Killian J. A., Lindblom G. Molecular ordering of interfacially localized tryptophan analogs in ester- and ether-lipid bilayers studied by 2H-NMR. Biophys J. 1998 Sep;75(3):1365–1371. doi: 10.1016/s0006-3495(98)74054-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  36. Scherer P. G., Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989 Sep 19;28(19):7720–7728. doi: 10.1021/bi00445a030. [DOI] [PubMed] [Google Scholar]
  37. Seelig A., Seelig J. Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry. 1977 Jan 11;16(1):45–50. doi: 10.1021/bi00620a008. [DOI] [PubMed] [Google Scholar]
  38. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  39. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  40. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  41. Seelig J. Titration calorimetry of lipid-peptide interactions. Biochim Biophys Acta. 1997 Mar 14;1331(1):103–116. doi: 10.1016/s0304-4157(97)00002-6. [DOI] [PubMed] [Google Scholar]
  42. Shrivastava I. H., Capener C. E., Forrest L. R., Sansom M. S. Structure and dynamics of K channel pore-lining helices: a comparative simulation study. Biophys J. 2000 Jan;78(1):79–92. doi: 10.1016/S0006-3495(00)76574-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tidor B., Karplus M. The contribution of vibrational entropy to molecular association. The dimerization of insulin. J Mol Biol. 1994 May 6;238(3):405–414. doi: 10.1006/jmbi.1994.1300. [DOI] [PubMed] [Google Scholar]
  45. Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tieleman D. P., Berendsen H. J., Sansom M. S. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations. Biophys J. 1999 Jun;76(6):3186–3191. doi: 10.1016/S0006-3495(99)77470-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tieleman D. P., Forrest L. R., Sansom M. S., Berendsen H. J. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry. 1998 Dec 15;37(50):17554–17561. doi: 10.1021/bi981802y. [DOI] [PubMed] [Google Scholar]
  48. Tieleman D. P., Sansom M. S., Berendsen H. J. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J. 1999 Jan;76(1 Pt 1):40–49. doi: 10.1016/S0006-3495(99)77176-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wallace B. A., Janes R. W. Co-crystals of gramicidin A and phospholipid. A system for studying the structure of a transmembrane channel. J Mol Biol. 1991 Feb 20;217(4):625–627. doi: 10.1016/0022-2836(91)90520-g. [DOI] [PubMed] [Google Scholar]
  50. White S. H., Wimley W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta. 1998 Nov 10;1376(3):339–352. doi: 10.1016/s0304-4157(98)00021-5. [DOI] [PubMed] [Google Scholar]
  51. Woolf T. B., Roux B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11631–11635. doi: 10.1073/pnas.91.24.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]
  53. van Gunsteren W. F., Berendsen H. J. Thermodynamic cycle integration by computer simulation as a tool for obtaining free energy differences in molecular chemistry. J Comput Aided Mol Des. 1987 Jul;1(2):171–176. doi: 10.1007/BF01676960. [DOI] [PubMed] [Google Scholar]
  54. van der Spoel D., van Buuren A. R., Tieleman D. P., Berendsen H. J. Molecular dynamics simulations of peptides from BPTI: a closer look at amide-aromatic interactions. J Biomol NMR. 1996 Oct;8(3):229–238. doi: 10.1007/BF00410322. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES