Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):841–851. doi: 10.1016/S0006-3495(01)76063-8

Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength.

T Oda 1, K Makino 1, I Yamashita 1, K Namba 1, Y Maéda 1
PMCID: PMC1301282  PMID: 11159451

Abstract

Lowering pH or raising salt concentration stabilizes the F-actin structure by increasing the free energy change associated with its polymerization. To understand the F-actin stabilization mechanism, we studied the effect of pH, salt concentration, and cation species on the F-actin structure. X-ray fiber diffraction patterns recorded from highly ordered F-actin sols at high density enabled us to detect minute changes of diffraction intensities and to precisely determine the helical parameters. F-actin in a solution containing 30 mM NaCl at pH 8 was taken as the control. F-actin at pH 8, 30 to 90 mM NaCl or 30 mM KCl showed a helical symmetry of 2.161 subunits per turn of the 1-start helix (12.968 subunits/6 turns). Lowering pH from 8 to 6 or replacing NaCl by LiCl altered the helical symmetry to 2.159 subunits per turn (12.952/6). The diffraction intensity associated with the 27-A meridional layer-line increased as the pH decreased but decreased as the NaCl concentration increased. None of the solvent conditions tested gave rise to significant changes in the pitch of the left-handed 1-start helix (approximately 59.8 A). The present results indicate that the two factors that stabilize F-actin, relatively low pH and high salt concentration, have distinct effects on the F-actin structure. Possible mechanisms will be discussed to understand how F-actin is stabilized under these conditions.

Full Text

The Full Text of this article is available as a PDF (947.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belmont L. D., Drubin D. G. The yeast V159N actin mutant reveals roles for actin dynamics in vivo. J Cell Biol. 1998 Sep 7;142(5):1289–1299. doi: 10.1083/jcb.142.5.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bremer A., Millonig R. C., Sütterlin R., Engel A., Pollard T. D., Aebi U. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model. J Cell Biol. 1991 Nov;115(3):689–703. doi: 10.1083/jcb.115.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CASPAR D. L. ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. Adv Protein Chem. 1963;18:37–121. doi: 10.1016/s0065-3233(08)60268-5. [DOI] [PubMed] [Google Scholar]
  4. Carlier M. F. Actin: protein structure and filament dynamics. J Biol Chem. 1991 Jan 5;266(1):1–4. [PubMed] [Google Scholar]
  5. Carlier M. F., Pantaloni D. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. J Biol Chem. 1988 Jan 15;263(2):817–825. [PubMed] [Google Scholar]
  6. Chen X., Cook R. K., Rubenstein P. A. Yeast actin with a mutation in the "hydrophobic plug" between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect. J Cell Biol. 1993 Dec;123(5):1185–1195. doi: 10.1083/jcb.123.5.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colombo R., Milzani A., Donne I. D. Lithium increases actin polymerization rates by enhancing the nucleation step. J Mol Biol. 1991 Feb 5;217(3):401–404. doi: 10.1016/0022-2836(91)90742-o. [DOI] [PubMed] [Google Scholar]
  8. Hegyi G., Mák M., Kim E., Elzinga M., Muhlrad A., Reisler E. Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine. Biochemistry. 1998 Dec 22;37(51):17784–17792. doi: 10.1021/bi981285j. [DOI] [PubMed] [Google Scholar]
  9. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  10. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  11. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  12. Khaitlina S. Y., Moraczewska J., Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem. 1993 Dec 15;218(3):911–920. doi: 10.1111/j.1432-1033.1993.tb18447.x. [DOI] [PubMed] [Google Scholar]
  13. Khaitlina S., Hinssen H. Conformational changes in actin induced by its interaction with gelsolin. Biophys J. 1997 Aug;73(2):929–937. doi: 10.1016/S0006-3495(97)78125-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim E., Reisler E. Intermolecular coupling between loop 38-52 and the C-terminus in actin filaments. Biophys J. 1996 Oct;71(4):1914–1919. doi: 10.1016/S0006-3495(96)79390-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  16. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  17. Kuang B., Rubenstein P. A. Beryllium fluoride and phalloidin restore polymerizability of a mutant yeast actin (V266G,L267G) with severely decreased hydrophobicity in a subdomain 3/4 loop. J Biol Chem. 1997 Jan 10;272(2):1237–1247. doi: 10.1074/jbc.272.2.1237. [DOI] [PubMed] [Google Scholar]
  18. Kurokawa H., Fujii W., Ohmi K., Sakurai T., Nonomura Y. Simple and rapid purification of brevin. Biochem Biophys Res Commun. 1990 Apr 30;168(2):451–457. doi: 10.1016/0006-291x(90)92342-w. [DOI] [PubMed] [Google Scholar]
  19. Lepault J., Ranck J. L., Erk I., Carlier M. F. Small angle X-ray scattering and electron cryomicroscopy study of actin filaments: role of the bound nucleotide in the structure of F-actin. J Struct Biol. 1994 Jan-Feb;112(1):79–91. doi: 10.1006/jsbi.1994.1009. [DOI] [PubMed] [Google Scholar]
  20. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  21. MARTONOSII A., MOLINO C. M., GERGELY J. THE BINDING OF DIVALENT CATIONS TO ACTIN. J Biol Chem. 1964 Apr;239:1057–1064. [PubMed] [Google Scholar]
  22. McGough A., Pope B., Chiu W., Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 1997 Aug 25;138(4):771–781. doi: 10.1083/jcb.138.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moraczewska J., Wawro B., Seguro K., Strzelecka-Golaszewska H. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys J. 1999 Jul;77(1):373–385. doi: 10.1016/S0006-3495(99)76896-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. OOSAWA F., KASAI M. A theory of linear and helical aggregations of macromolecules. J Mol Biol. 1962 Jan;4:10–21. doi: 10.1016/s0022-2836(62)80112-0. [DOI] [PubMed] [Google Scholar]
  25. Oda T., Makino K., Yamashita I., Namba K., Maéda Y. Effect of the length and effective diameter of F-actin on the filament orientation in liquid crystalline sols measured by x-ray fiber diffraction. Biophys J. 1998 Dec;75(6):2672–2681. doi: 10.1016/S0006-3495(98)77712-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Orlova A., Egelman E. H. A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol. 1993 Jul 20;232(2):334–341. doi: 10.1006/jmbi.1993.1393. [DOI] [PubMed] [Google Scholar]
  27. Orlova A., Egelman E. H. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J Mol Biol. 1992 Oct 20;227(4):1043–1053. doi: 10.1016/0022-2836(92)90520-t. [DOI] [PubMed] [Google Scholar]
  28. Orlova A., Egelman E. H. Structural dynamics of F-actin: I. Changes in the C terminus. J Mol Biol. 1995 Feb 3;245(5):582–597. doi: 10.1006/jmbi.1994.0048. [DOI] [PubMed] [Google Scholar]
  29. Orlova A., Prochniewicz E., Egelman E. H. Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol. 1995 Feb 3;245(5):598–607. doi: 10.1006/jmbi.1994.0049. [DOI] [PubMed] [Google Scholar]
  30. Pan X. X., Ware B. R. Actin assembly by lithium ions. Biophys J. 1988 Jan;53(1):11–16. doi: 10.1016/S0006-3495(88)83060-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Prochniewicz E., Zhang Q., Janmey P. A., Thomas D. D. Cooperativity in F-actin: binding of gelsolin at the barbed end affects structure and dynamics of the whole filament. J Mol Biol. 1996 Aug 2;260(5):756–766. doi: 10.1006/jmbi.1996.0435. [DOI] [PubMed] [Google Scholar]
  32. Sampath P., Pollard T. D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry. 1991 Feb 19;30(7):1973–1980. doi: 10.1021/bi00221a034. [DOI] [PubMed] [Google Scholar]
  33. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  34. Strzelecka-Golaszewska H., Wozniak A., Hult T., Lindberg U. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J. 1996 Jun 15;316(Pt 3):713–721. doi: 10.1042/bj3160713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strzelecka-Gołaszewska H., Mossakowska M., Woźniak A., Moraczewska J., Nakayama H. Long-range conformational effects of proteolytic removal of the last three residues of actin. Biochem J. 1995 Apr 15;307(Pt 2):527–534. doi: 10.1042/bj3070527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Suzuki A., Ito T. Polymorphism of F-actin assembly. 2. Effects of barbed end capping on F-actin assembly. Biochemistry. 1996 Apr 23;35(16):5245–5249. doi: 10.1021/bi9526948. [DOI] [PubMed] [Google Scholar]
  37. Tirion M. M., ben-Avraham D., Lorenz M., Holmes K. C. Normal modes as refinement parameters for the F-actin model. Biophys J. 1995 Jan;68(1):5–12. doi: 10.1016/S0006-3495(95)80156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang F., Sampogna R. V., Ware B. R. pH dependence of actin self-assembly. Biophys J. 1989 Feb;55(2):293–298. doi: 10.1016/S0006-3495(89)82804-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamashita I., Hasegawa K., Suzuki H., Vonderviszt F., Mimori-Kiyosue Y., Namba K. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat Struct Biol. 1998 Feb;5(2):125–132. doi: 10.1038/nsb0298-125. [DOI] [PubMed] [Google Scholar]
  40. Yamashita I., Vonderviszt F., Mimori Y., Suzuki H., Oosawa K., Namba K. Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding. J Mol Biol. 1995 Nov 3;253(4):547–558. doi: 10.1006/jmbi.1995.0572. [DOI] [PubMed] [Google Scholar]
  41. Zimmerle C. T., Frieden C. Effect of pH on the mechanism of actin polymerization. Biochemistry. 1988 Oct 4;27(20):7766–7772. doi: 10.1021/bi00420a027. [DOI] [PubMed] [Google Scholar]
  42. Zimmerle C. T., Frieden C. pH-induced changes in G-actin conformation and metal affinity. Biochemistry. 1988 Oct 4;27(20):7759–7765. doi: 10.1021/bi00420a026. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES