Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):894–900. doi: 10.1016/S0006-3495(01)76068-7

Force-induced melting of the DNA double helix. 2. Effect of solution conditions.

I Rouzina 1, V A Bloomfield 1
PMCID: PMC1301287  PMID: 11159456

Abstract

In this paper, we consider the implications of the general theory developed in the accompanying paper, to interpret experiments on DNA overstretching that involve variables such as solution temperature, pH, and ionic strength. We find the DNA helix-coil phase boundary in the force-temperature space. At temperatures significantly below the regular (zero force) DNA melting temperature, the overstretching force, f(ov)(T), is predicted to decrease nearly linearly with temperature. We calculate the slope of this dependence as a function of entropy and heat-capacity changes upon DNA melting. Fitting of the experimental f(ov)(T) dependence allows determination of both of these quantities in very good agreement with their calorimetric values. At temperatures slightly above the regular DNA melting temperature, we predict stabilization of dsDNA by moderate forces, and destabilization by higher forces. Thus the DNA stretching curves, f(b), should exhibit two rather than one overstretching transitions: from single stranded (ss) to double stranded (ds) and then back at the higher force. We also predict that any change in DNA solution conditions that affects its melting temperature should have a similar effect on DNA overstretching force. This result is used to calculate the dependence of DNA overstretching force on solution pH, f(ov)(pH), from the known dependence of DNA melting temperature on pH. The calculated f(ov)(pH) is in excellent agreement with its experimental determination (M. C. Williams, J. R. Wenner, I. Rouzina, and V. A. Bloomfield, Biophys. J., accepted for publication). Finally, we quantitatively explain the measured dependence of DNA overstretching force on solution ionic strength for crosslinked and noncrosslinked DNA. The much stronger salt dependence of f(ov) in noncrosslinked DNA results from its lower linear charge density in the melted state, compared to crosslinked or double-stranded overstretched S-DNA.

Full Text

The Full Text of this article is available as a PDF (95.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake R. D., Delcourt S. G. Thermal stability of DNA. Nucleic Acids Res. 1998 Jul 15;26(14):3323–3332. doi: 10.1093/nar/26.14.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond J. P., Anderson C. F., Record M. T., Jr Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients. Biophys J. 1994 Aug;67(2):825–836. doi: 10.1016/S0006-3495(94)80542-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chalikian T. V., Völker J., Plum G. E., Breslauer K. J. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7853–7858. doi: 10.1073/pnas.96.14.7853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hegner M., Smith S. B., Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10109–10114. doi: 10.1073/pnas.96.18.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holbrook J. A., Capp M. W., Saecker R. M., Record M. T., Jr Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry. 1999 Jun 29;38(26):8409–8422. doi: 10.1021/bi990043w. [DOI] [PubMed] [Google Scholar]
  7. Jelesarov I., Crane-Robinson C., Privalov P. L. The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes. J Mol Biol. 1999 Dec 10;294(4):981–995. doi: 10.1006/jmbi.1999.3284. [DOI] [PubMed] [Google Scholar]
  8. Kozyavkin S. A., Mirkin S. M., Amirikyan B. R. The ionic strength dependence of the cooperativity factor for DNA melting. J Biomol Struct Dyn. 1987 Aug;5(1):119–126. doi: 10.1080/07391102.1987.10506380. [DOI] [PubMed] [Google Scholar]
  9. Rouzina I., Bloomfield V. A. Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys J. 2001 Feb;80(2):882–893. doi: 10.1016/S0006-3495(01)76067-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 1. General aspects. Biophys J. 1999 Dec;77(6):3242–3251. doi: 10.1016/S0006-3495(99)77155-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys J. 1999 Dec;77(6):3252–3255. doi: 10.1016/S0006-3495(99)77156-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  14. Stigter D. An electrostatic model of B-DNA for its stability against unwinding. Biophys Chem. 1998 Dec 14;75(3):229–233. doi: 10.1016/s0301-4622(98)00211-7. [DOI] [PubMed] [Google Scholar]
  15. Strunz T., Oroszlan K., Schäfer R., Güntherodt H. J. Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11277–11282. doi: 10.1073/pnas.96.20.11277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wuite G. J., Smith S. B., Young M., Keller D., Bustamante C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature. 2000 Mar 2;404(6773):103–106. doi: 10.1038/35003614. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES