Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1151–1168. doi: 10.1016/S0006-3495(01)76092-4

Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd.

T J Minehardt 1, R Cooke 1, E Pate 1, P A Kollman 1
PMCID: PMC1301311  PMID: 11222280

Abstract

The switch 1 region of myosin forms a lid over the nucleotide phosphates as part of a structure known as the phosphate-tube. The homologous region in kinesin-family motors is more open, not interacting with the nucleotide. We used molecular dynamics (MD) simulations to examine a possible displacement of switch 1 of the microtubule motor, ncd, from the open conformation to the closed conformation seen in myosin. MD simulations were done of both the open and the closed conformations, with either MgADP or MgATP at the active site. All MD structures were stable at 300 K for 500 ps, implying that the open and closed conformers all represented local minima on a global free energy surface. Free energy calculations indicated that the open structure was energetically favored with MgADP at the active site, suggesting why only the open structure has been captured in crystallographic work. With MgATP, the closed and open structures had roughly equal energies. Simulated annealing MD showed the transformation from the closed phosphate-tube ncd structure to an open configuration. The MD simulations also showed that the coordination of switch 1 to the nucleotide dramatically affected the position of both the bound nucleotide and switch 2 and that a closed phosphate-tube may be necessary for catalysis.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso M. C., van Damme J., Vandekerckhove J., Cross R. A. Proteolytic mapping of kinesin/ncd-microtubule interface: nucleotide-dependent conformational changes in the loops L8 and L12. EMBO J. 1998 Feb 16;17(4):945–951. doi: 10.1093/emboj/17.4.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chong L. T., Duan Y., Wang L., Massova I., Kollman P. A. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14330–14335. doi: 10.1073/pnas.96.25.14330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooke R. Actomyosin interaction in striated muscle. Physiol Rev. 1997 Jul;77(3):671–697. doi: 10.1152/physrev.1997.77.3.671. [DOI] [PubMed] [Google Scholar]
  4. Demchuk E., Bashford D., Gippert G. P., Case D. A. Thermodynamics of a reverse turn motif. Solvent effects and side-chain packing. J Mol Biol. 1997 Jul 11;270(2):305–317. doi: 10.1006/jmbi.1997.1103. [DOI] [PubMed] [Google Scholar]
  5. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  6. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  7. Goldberg J. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell. 1999 Mar 19;96(6):893–902. doi: 10.1016/s0092-8674(00)80598-x. [DOI] [PubMed] [Google Scholar]
  8. Gulick A. M., Bauer C. B., Thoden J. B., Pate E., Yount R. G., Rayment I. X-ray structures of the Dictyostelium discoideum myosin motor domain with six non-nucleotide analogs. J Biol Chem. 2000 Jan 7;275(1):398–408. doi: 10.1074/jbc.275.1.398. [DOI] [PubMed] [Google Scholar]
  9. Gulick A. M., Bauer C. B., Thoden J. B., Rayment I. X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry. 1997 Sep 30;36(39):11619–11628. doi: 10.1021/bi9712596. [DOI] [PubMed] [Google Scholar]
  10. Gulick A. M., Song H., Endow S. A., Rayment I. X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution. Biochemistry. 1998 Feb 17;37(7):1769–1776. doi: 10.1021/bi972504o. [DOI] [PubMed] [Google Scholar]
  11. Holmes K. C. Muscle proteins--their actions and interactions. Curr Opin Struct Biol. 1996 Dec;6(6):781–789. doi: 10.1016/s0959-440x(96)80008-x. [DOI] [PubMed] [Google Scholar]
  12. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  13. Kjeldgaard M., Nissen P., Thirup S., Nyborg J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1993 Sep 15;1(1):35–50. doi: 10.1016/0969-2126(93)90007-4. [DOI] [PubMed] [Google Scholar]
  14. Kozielski F., Sack S., Marx A., Thormählen M., Schönbrunn E., Biou V., Thompson A., Mandelkow E. M., Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell. 1997 Dec 26;91(7):985–994. doi: 10.1016/s0092-8674(00)80489-4. [DOI] [PubMed] [Google Scholar]
  15. Kull F. J., Sablin E. P., Lau R., Fletterick R. J., Vale R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature. 1996 Apr 11;380(6574):550–555. doi: 10.1038/380550a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kull F. J., Vale R. D., Fletterick R. J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil. 1998 Nov;19(8):877–886. doi: 10.1023/a:1005489907021. [DOI] [PubMed] [Google Scholar]
  17. Ma Y. Z., Taylor E. W. Kinetic mechanism of a monomeric kinesin construct. J Biol Chem. 1997 Jan 10;272(2):717–723. doi: 10.1074/jbc.272.2.717. [DOI] [PubMed] [Google Scholar]
  18. Ma Y. Z., Taylor E. W. Kinetic mechanism of kinesin motor domain. Biochemistry. 1995 Oct 10;34(40):13233–13241. doi: 10.1021/bi00040a039. [DOI] [PubMed] [Google Scholar]
  19. Müller J., Marx A., Sack S., Song Y. H., Mandelkow E. The structure of the nucleotide-binding site of kinesin. Biol Chem. 1999 Jul-Aug;380(7-8):981–992. doi: 10.1515/BC.1999.122. [DOI] [PubMed] [Google Scholar]
  20. Naber N., Cooke R., Pate E. Binding of ncd to microtubules induces a conformational change near the junction of the motor domain with the neck. Biochemistry. 1997 Aug 12;36(32):9681–9689. doi: 10.1021/bi9706881. [DOI] [PubMed] [Google Scholar]
  21. Onishi H., Kojima S., Katoh K., Fujiwara K., Martinez H. M., Morales M. F. Functional transitions in myosin: formation of a critical salt-bridge and transmission of effect to the sensitive tryptophan. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6653–6658. doi: 10.1073/pnas.95.12.6653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pate E., Naber N., Matuska M., Franks-Skiba K., Cooke R. Opening of the myosin nucleotide triphosphate binding domain during the ATPase cycle. Biochemistry. 1997 Oct 7;36(40):12155–12166. doi: 10.1021/bi970996z. [DOI] [PubMed] [Google Scholar]
  24. Rayment I., Smith C., Yount R. G. The active site of myosin. Annu Rev Physiol. 1996;58:671–702. doi: 10.1146/annurev.ph.58.030196.003323. [DOI] [PubMed] [Google Scholar]
  25. Sablin E. P., Case R. B., Dai S. C., Hart C. L., Ruby A., Vale R. D., Fletterick R. J. Direction determination in the minus-end-directed kinesin motor ncd. Nature. 1998 Oct 22;395(6704):813–816. doi: 10.1038/27463. [DOI] [PubMed] [Google Scholar]
  26. Sablin E. P., Kull F. J., Cooke R., Vale R. D., Fletterick R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature. 1996 Apr 11;380(6574):555–559. doi: 10.1038/380555a0. [DOI] [PubMed] [Google Scholar]
  27. Sack S., Kull F. J., Mandelkow E. Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. Eur J Biochem. 1999 May;262(1):1–11. doi: 10.1046/j.1432-1327.1999.00341.x. [DOI] [PubMed] [Google Scholar]
  28. Sanner M. F., Olson A. J., Spehner J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996 Mar;38(3):305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  29. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  30. Sleep J., Herrmann C., Barman T., Travers F. Inhibition of ATP binding to myofibrils and acto-myosin subfragment 1 by caged ATP. Biochemistry. 1994 May 24;33(20):6038–6042. doi: 10.1021/bi00186a002. [DOI] [PubMed] [Google Scholar]
  31. Smith C. A., Rayment I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J. 1996 Apr;70(4):1590–1602. doi: 10.1016/S0006-3495(96)79745-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  33. Smith K. C., Honig B. Evaluation of the conformational free energies of loops in proteins. Proteins. 1994 Feb;18(2):119–132. doi: 10.1002/prot.340180205. [DOI] [PubMed] [Google Scholar]
  34. Taylor E. W. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem. 1979;6(2):103–164. doi: 10.3109/10409237909102562. [DOI] [PubMed] [Google Scholar]
  35. Tong L. A., de Vos A. M., Milburn M. V., Kim S. H. Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J Mol Biol. 1991 Feb 5;217(3):503–516. doi: 10.1016/0022-2836(91)90753-s. [DOI] [PubMed] [Google Scholar]
  36. Tucker C., Goldstein L. S. Probing the kinesin-microtubule interaction. J Biol Chem. 1997 Apr 4;272(14):9481–9488. doi: 10.1074/jbc.272.14.9481. [DOI] [PubMed] [Google Scholar]
  37. Vale R. D., Milligan R. A. The way things move: looking under the hood of molecular motor proteins. Science. 2000 Apr 7;288(5463):88–95. doi: 10.1126/science.288.5463.88. [DOI] [PubMed] [Google Scholar]
  38. Vale R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol. 1996 Oct;135(2):291–302. doi: 10.1083/jcb.135.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Woehlke G., Ruby A. K., Hart C. L., Ly B., Hom-Booher N., Vale R. D. Microtubule interaction site of the kinesin motor. Cell. 1997 Jul 25;90(2):207–216. doi: 10.1016/s0092-8674(00)80329-3. [DOI] [PubMed] [Google Scholar]
  41. Wriggers W., Schulten K. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing. Biophys J. 1998 Aug;75(2):646–661. doi: 10.1016/S0006-3495(98)77555-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yang A. S., Hitz B., Honig B. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding. J Mol Biol. 1996 Jun 21;259(4):873–882. doi: 10.1006/jmbi.1996.0364. [DOI] [PubMed] [Google Scholar]
  43. Yang A. S., Honig B. Free energy determinants of secondary structure formation: I. alpha-Helices. J Mol Biol. 1995 Sep 22;252(3):351–365. doi: 10.1006/jmbi.1995.0502. [DOI] [PubMed] [Google Scholar]
  44. Yang A. S., Honig B. Free energy determinants of secondary structure formation: II. Antiparallel beta-sheets. J Mol Biol. 1995 Sep 22;252(3):366–376. doi: 10.1006/jmbi.1995.0503. [DOI] [PubMed] [Google Scholar]
  45. Yount R. G., Lawson D., Rayment I. Is myosin a "back door" enzyme? Biophys J. 1995 Apr;68(4 Suppl):44S–49S. [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES