Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1507–1517. doi: 10.1016/S0006-3495(01)76123-1

Ligand migration in human myoglobin: steric effects of isoleucine 107(G8) on O(2) and CO binding.

H Ishikawa 1, T Uchida 1, S Takahashi 1, K Ishimori 1, I Morishima 1
PMCID: PMC1301342  PMID: 11222311

Abstract

To investigate the ligand pathway in myoglobin, some mutant myoglobins, in which one of the amino acid residues constituting a putative ligand-docking site, Ile107, is replaced by Ala, Val, Leu, or Phe, were prepared and their structural and ligand binding properties were characterized. The kinetic barrier for the ligand entry to protein inside was lowered by decreasing the side-chain volume at position 107, indicating that the bulky side chain interferes with the formation of the activation state for the ligand migration and the free space near position 107 would be filled with the ligand in the activation state. Another prominent effect of the reduced side-chain volume at position 107 is to stabilize the ligand-binding intermediate state. Because the stabilization can be ascribed to decrease of the positive enthalpy, the enlarged free space near position 107 would relieve unfavorable steric interactions between the ligand and nearby amino acid residues. The side-chain volume at position 107, therefore, is crucial for the kinetic barrier for the ligand migration and free energy of the ligand-binding intermediate state, which allows us to propose that some photodissociated O(2) moves toward position 107 to be trapped and then expelled to the solvent.

Full Text

The Full Text of this article is available as a PDF (855.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi S., Morishima I. The effects of pressure on oxygen and carbon monoxide binding kinetics for myoglobin. A high pressure laser flash photolysis study. J Biol Chem. 1989 Nov 15;264(32):18896–18901. [PubMed] [Google Scholar]
  2. Adachi S., Sunohara N., Ishimori K., Morishima I. Structure and ligand binding properties of leucine 29(B10) mutants of human myoglobin. J Biol Chem. 1992 Jun 25;267(18):12614–12621. [PubMed] [Google Scholar]
  3. Brunori M., Vallone B., Cutruzzola F., Travaglini-Allocatelli C., Berendzen J., Chu K., Sweet R. M., Schlichting I. The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2058–2063. doi: 10.1073/pnas.040459697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlson M. L., Regan R. M., Gibson Q. H. Distal cavity fluctuations in myoglobin: protein motion and ligand diffusion. Biochemistry. 1996 Jan 30;35(4):1125–1136. doi: 10.1021/bi951767k. [DOI] [PubMed] [Google Scholar]
  5. Carver T. E., Rohlfs R. J., Olson J. S., Gibson Q. H., Blackmore R. S., Springer B. A., Sligar S. G. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques. J Biol Chem. 1990 Nov 15;265(32):20007–20020. [PubMed] [Google Scholar]
  6. Case D. A., Karplus M. Dynamics of ligand binding to heme proteins. J Mol Biol. 1979 Aug 15;132(3):343–368. doi: 10.1016/0022-2836(79)90265-1. [DOI] [PubMed] [Google Scholar]
  7. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  8. Chu K., Vojtchovský J., McMahon B. H., Sweet R. M., Berendzen J., Schlichting I. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature. 2000 Feb 24;403(6772):921–923. doi: 10.1038/35002641. [DOI] [PubMed] [Google Scholar]
  9. Egeberg K. D., Springer B. A., Sligar S. G., Carver T. E., Rohlfs R. J., Olson J. S. The role of Val68(E11) in ligand binding to sperm whale myoglobin. Site-directed mutagenesis of a synthetic gene. J Biol Chem. 1990 Jul 15;265(20):11788–11795. [PubMed] [Google Scholar]
  10. Gibson Q. H., Regan R., Elber R., Olson J. S., Carver T. E. Distal pocket residues affect picosecond ligand recombination in myoglobin. An experimental and molecular dynamics study of position 29 mutants. J Biol Chem. 1992 Nov 5;267(31):22022–22034. [PubMed] [Google Scholar]
  11. Hartmann H., Zinser S., Komninos P., Schneider R. T., Nienhaus G. U., Parak F. X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7013–7016. doi: 10.1073/pnas.93.14.7013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henry E. R., Sommer J. H., Hofrichter J., Eaton W. A. Geminate recombination of carbon monoxide to myoglobin. J Mol Biol. 1983 May 25;166(3):443–451. doi: 10.1016/s0022-2836(83)80094-1. [DOI] [PubMed] [Google Scholar]
  13. Huang X., Boxer S. G. Discovery of new ligand binding pathways in myoglobin by random mutagenesis. Nat Struct Biol. 1994 Apr;1(4):226–229. doi: 10.1038/nsb0494-226. [DOI] [PubMed] [Google Scholar]
  14. Hubbard S. R., Hendrickson W. A., Lambright D. G., Boxer S. G. X-ray crystal structure of a recombinant human myoglobin mutant at 2.8 A resolution. J Mol Biol. 1990 May 20;213(2):215–218. doi: 10.1016/S0022-2836(05)80181-0. [DOI] [PubMed] [Google Scholar]
  15. Ikeda-Saito M., Dou Y., Yonetani T., Olson J. S., Li T., Regan R., Gibson Q. H. Ligand diffusion in the distal heme pocket of myoglobin. A primary determinant of geminate rebinding. J Biol Chem. 1993 Apr 5;268(10):6855–6857. [PubMed] [Google Scholar]
  16. Krzywda S., Murshudov G. N., Brzozowski A. M., Jaskolski M., Scott E. E., Klizas S. A., Gibson Q. H., Olson J. S., Wilkinson A. J. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution. Biochemistry. 1998 Nov 10;37(45):15896–15907. doi: 10.1021/bi9812470. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lambright D. G., Balasubramanian S., Boxer S. G. Ligand and proton exchange dynamics in recombinant human myoglobin mutants. J Mol Biol. 1989 May 5;207(1):289–299. doi: 10.1016/0022-2836(89)90456-7. [DOI] [PubMed] [Google Scholar]
  19. Li T., Quillin M. L., Phillips G. N., Jr, Olson J. S. Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry. 1994 Feb 15;33(6):1433–1446. doi: 10.1021/bi00172a021. [DOI] [PubMed] [Google Scholar]
  20. Lim M., Jackson T. A., Anfinrud P. A. Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat Struct Biol. 1997 Mar;4(3):209–214. doi: 10.1038/nsb0397-209. [DOI] [PubMed] [Google Scholar]
  21. Meller J., Elber R. Computer simulations of carbon monoxide photodissociation in myoglobin: structural interpretation of the B states. Biophys J. 1998 Feb;74(2 Pt 1):789–802. doi: 10.1016/S0006-3495(98)74004-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morikis D., Champion P. M., Springer B. A., Sligar S. G. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry. 1989 May 30;28(11):4791–4800. doi: 10.1021/bi00437a041. [DOI] [PubMed] [Google Scholar]
  23. Olson J. S., Phillips G. N., Jr Kinetic pathways and barriers for ligand binding to myoglobin. J Biol Chem. 1996 Jul 26;271(30):17593–17596. doi: 10.1074/jbc.271.30.17593. [DOI] [PubMed] [Google Scholar]
  24. Ostermann A., Waschipky R., Parak F. G., Nienhaus G. U. Ligand binding and conformational motions in myoglobin. Nature. 2000 Mar 9;404(6774):205–208. doi: 10.1038/35004622. [DOI] [PubMed] [Google Scholar]
  25. Quillin M. L., Li T., Olson J. S., Phillips G. N., Jr, Dou Y., Ikeda-Saito M., Regan R., Carlson M., Gibson Q. H., Li H. Structural and functional effects of apolar mutations of the distal valine in myoglobin. J Mol Biol. 1995 Jan 27;245(4):416–436. doi: 10.1006/jmbi.1994.0034. [DOI] [PubMed] [Google Scholar]
  26. Rohlfs R. J., Mathews A. J., Carver T. E., Olson J. S., Springer B. A., Egeberg K. D., Sligar S. G. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J Biol Chem. 1990 Feb 25;265(6):3168–3176. [PubMed] [Google Scholar]
  27. Schlichting I., Berendzen J., Phillips G. N., Jr, Sweet R. M. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature. 1994 Oct 27;371(6500):808–812. doi: 10.1038/371808a0. [DOI] [PubMed] [Google Scholar]
  28. Scott E. E., Gibson Q. H. Ligand migration in sperm whale myoglobin. Biochemistry. 1997 Sep 30;36(39):11909–11917. doi: 10.1021/bi970719s. [DOI] [PubMed] [Google Scholar]
  29. Smerdon S. J., Dodson G. G., Wilkinson A. J., Gibson Q. H., Blackmore R. S. Distal pocket polarity in ligand binding to myoglobin: structural and functional characterization of a threonine68(E11) mutant. Biochemistry. 1991 Jun 25;30(25):6252–6260. doi: 10.1021/bi00239a025. [DOI] [PubMed] [Google Scholar]
  30. Srajer V., Teng T., Ursby T., Pradervand C., Ren Z., Adachi S., Schildkamp W., Bourgeois D., Wulff M., Moffat K. Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science. 1996 Dec 6;274(5293):1726–1729. doi: 10.1126/science.274.5293.1726. [DOI] [PubMed] [Google Scholar]
  31. Uchida T., Ishimori K., Morishima I. The effects of heme pocket hydrophobicity on the ligand binding dynamics in myoglobin as studied with leucine 29 mutants. J Biol Chem. 1997 Nov 28;272(48):30108–30114. doi: 10.1074/jbc.272.48.30108. [DOI] [PubMed] [Google Scholar]
  32. Varadarajan R., Lambright D. G., Boxer S. G. Electrostatic interactions in wild-type and mutant recombinant human myoglobins. Biochemistry. 1989 May 2;28(9):3771–3781. doi: 10.1021/bi00435a022. [DOI] [PubMed] [Google Scholar]
  33. Varadarajan R., Szabo A., Boxer S. G. Cloning, expression in Escherichia coli, and reconstitution of human myoglobin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5681–5684. doi: 10.1073/pnas.82.17.5681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vojtechovský J., Chu K., Berendzen J., Sweet R. M., Schlichting I. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys J. 1999 Oct;77(4):2153–2174. doi: 10.1016/S0006-3495(99)77056-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES