Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1575–1584. doi: 10.1016/S0006-3495(01)76130-9

Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion.

T E Starr 1, N L Thompson 1
PMCID: PMC1301349  PMID: 11222318

Abstract

Total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) is a method for measuring the surface association/dissociation rates and absolute densities of fluorescent molecules at the interface of solution and a planar substrate. This method can also report the apparent diffusion coefficient and absolute concentration of fluorescent molecules very close to the surface. An expression for the fluorescence fluctuation autocorrelation function in the absence of contributions from diffusion through the evanescent wave, in solution, has been published previously (N. L. Thompson, T. P. Burghardt, and D. Axelrod. 1981, Biophys. J. 33:435-454). This work describes the nature of the TIR-FCS autocorrelation function when both surface association/dissociation kinetics and diffusion through the evanescent wave contribute to the fluorescence fluctuations. The fluorescence fluctuation autocorrelation function depends in general on the kinetic association and dissociation rate constants, the surface site density, the concentration of fluorescent molecules in solution, the solution diffusion coefficient, and the depth of the evanescent field. Both general and approximate expressions are presented.

Full Text

The Full Text of this article is available as a PDF (127.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. Total internal reflection fluorescence microscopy. Methods Cell Biol. 1989;30:245–270. doi: 10.1016/s0091-679x(08)60982-6. [DOI] [PubMed] [Google Scholar]
  2. Bieschke J., Giese A., Schulz-Schaeffer W., Zerr I., Poser S., Eigen M., Kretzschmar H. Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5468–5473. doi: 10.1073/pnas.97.10.5468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y., Müller J. D., Berland K. M., Gratton E. Fluorescence fluctuation spectroscopy. Methods. 1999 Oct;19(2):234–252. doi: 10.1006/meth.1999.0854. [DOI] [PubMed] [Google Scholar]
  4. Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clemetson K. J., Clemetson J. M. Integrins and cardiovascular disease. Cell Mol Life Sci. 1998 Jun;54(6):502–513. doi: 10.1007/s000180050179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cluzel P., Surette M., Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 2000 Mar 3;287(5458):1652–1655. doi: 10.1126/science.287.5458.1652. [DOI] [PubMed] [Google Scholar]
  7. Daëron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203–234. doi: 10.1146/annurev.immunol.15.1.203. [DOI] [PubMed] [Google Scholar]
  8. Hsieh H. V., Poglitsch C. L., Thompson N. L. Direct measurement of the weak interactions between a mouse Fc receptor (Fc gamma RII) and IgG1 in the absence and presence of hapten: a total internal reflection fluorescence microscopy study. Biochemistry. 1992 Nov 24;31(46):11562–11566. doi: 10.1021/bi00161a039. [DOI] [PubMed] [Google Scholar]
  9. Hsieh H. V., Thompson N. L. Dissociation kinetics between a mouse Fc receptor (Fc gamma RII) and IgG: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry. 1995 Sep 26;34(38):12481–12488. doi: 10.1021/bi00038a047. [DOI] [PubMed] [Google Scholar]
  10. Hsieh H. V., Thompson N. L. Theory for measuring bivalent surface binding kinetics using total internal reflection with fluorescence photobleaching recovery. Biophys J. 1994 Mar;66(3 Pt 1):898–911. doi: 10.1016/s0006-3495(94)80866-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hwa V., Oh Y., Rosenfeld R. G. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev. 1999 Dec;20(6):761–787. doi: 10.1210/edrv.20.6.0382. [DOI] [PubMed] [Google Scholar]
  12. Kalb E., Engel J., Tamm L. K. Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 1990 Feb 13;29(6):1607–1613. doi: 10.1021/bi00458a036. [DOI] [PubMed] [Google Scholar]
  13. Kim J. H., Huganir R. L. Organization and regulation of proteins at synapses. Curr Opin Cell Biol. 1999 Apr;11(2):248–254. doi: 10.1016/s0955-0674(99)80033-7. [DOI] [PubMed] [Google Scholar]
  14. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korlach J., Schwille P., Webb W. W., Feigenson G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lagerholm B. C., Starr T. E., Volovyk Z. N., Thompson N. L. Rebinding of IgE Fabs at haptenated planar membranes: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry. 2000 Feb 29;39(8):2042–2051. doi: 10.1021/bi9917434. [DOI] [PubMed] [Google Scholar]
  17. Lagerholm B. C., Thompson N. L. Theory for ligand rebinding at cell membrane surfaces. Biophys J. 1998 Mar;74(3):1215–1228. doi: 10.1016/S0006-3495(98)77836-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Magde D., Elson E. L., Webb W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974 Jan;13(1):29–61. doi: 10.1002/bip.1974.360130103. [DOI] [PubMed] [Google Scholar]
  19. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  20. Meseth U., Wohland T., Rigler R., Vogel H. Resolution of fluorescence correlation measurements. Biophys J. 1999 Mar;76(3):1619–1631. doi: 10.1016/S0006-3495(99)77321-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moore KJ, Turconi S, Ashman S, Ruediger M, Haupts U, Emerick V, V, Pope AJ. Single Molecule Detection Technologies in Miniaturized High Throughput Screening: Fluorescence Correlation Spectroscopy. J Biomol Screen. 1999;4(6):335–354. doi: 10.1177/108705719900400609. [DOI] [PubMed] [Google Scholar]
  22. Müller B., Zerwes H. G., Tangemann K., Peter J., Engel J. Two-step binding mechanism of fibrinogen to alpha IIb beta 3 integrin reconstituted into planar lipid bilayers. J Biol Chem. 1993 Mar 25;268(9):6800–6808. [PubMed] [Google Scholar]
  23. Olofsson B., Jeltsch M., Eriksson U., Alitalo K. Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol. 1999 Dec;10(6):528–535. doi: 10.1016/s0958-1669(99)00024-5. [DOI] [PubMed] [Google Scholar]
  24. Palmer A. G., 3rd, Thompson N. L. Fluorescence correlation spectroscopy for detecting submicroscopic clusters of fluorescent molecules in membranes. Chem Phys Lipids. 1989 Jun;50(3-4):253–270. doi: 10.1016/0009-3084(89)90053-4. [DOI] [PubMed] [Google Scholar]
  25. Pisarchick M. L., Thompson N. L. Binding of a monoclonal antibody and its Fab fragment to supported phospholipid monolayers measured by total internal reflection fluorescence microscopy. Biophys J. 1990 Nov;58(5):1235–1249. doi: 10.1016/S0006-3495(90)82464-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ravetch J. V. Fc receptors. Curr Opin Immunol. 1997 Feb;9(1):121–125. doi: 10.1016/s0952-7915(97)80168-9. [DOI] [PubMed] [Google Scholar]
  27. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996 Jan 5;271(5245):43–48. doi: 10.1126/science.271.5245.43. [DOI] [PubMed] [Google Scholar]
  28. Schwille P., Kummer S., Heikal A. A., Moerner W. E., Webb W. W. Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):151–156. doi: 10.1073/pnas.97.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schüler J., Frank J., Trier U., Schäfer-Korting M., Saenger W. Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy. Biochemistry. 1999 Jun 29;38(26):8402–8408. doi: 10.1021/bi9819576. [DOI] [PubMed] [Google Scholar]
  30. Seal R. P., Amara S. G. Excitatory amino acid transporters: a family in flux. Annu Rev Pharmacol Toxicol. 1999;39:431–456. doi: 10.1146/annurev.pharmtox.39.1.431. [DOI] [PubMed] [Google Scholar]
  31. Silverman L., Campbell R., Broach J. R. New assay technologies for high-throughput screening. Curr Opin Chem Biol. 1998 Jun;2(3):397–403. doi: 10.1016/s1367-5931(98)80015-x. [DOI] [PubMed] [Google Scholar]
  32. Sterrer S., Henco K. Fluorescence correlation spectroscopy (FCS)--a highly sensitive method to analyze drug/target interactions. J Recept Signal Transduct Res. 1997 Jan-May;17(1-3):511–520. doi: 10.3109/10799899709036624. [DOI] [PubMed] [Google Scholar]
  33. Thompson N. L., Axelrod D. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J. 1983 Jul;43(1):103–114. doi: 10.1016/S0006-3495(83)84328-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thompson N. L., Burghardt T. P., Axelrod D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J. 1981 Mar;33(3):435–454. doi: 10.1016/S0006-3495(81)84905-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thompson N. L., Lagerholm B. C. Total internal reflection fluorescence: applications in cellular biophysics. Curr Opin Biotechnol. 1997 Feb;8(1):58–64. doi: 10.1016/s0958-1669(97)80158-9. [DOI] [PubMed] [Google Scholar]
  36. Thompson N. L., Pearce K. H., Hsieh H. V. Total internal reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur Biophys J. 1993;22(5):367–378. doi: 10.1007/BF00213560. [DOI] [PubMed] [Google Scholar]
  37. Thompson N. L. Surface binding rates of nonfluorescent molecules may be obtained by total internal reflection with fluorescence correlation spectroscopy. Biophys J. 1982 Jun;38(3):327–329. doi: 10.1016/S0006-3495(82)84567-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van Craenenbroeck E., Engelborghs Y. Fluorescence correlation spectroscopy: molecular recognition at the single molecule level. J Mol Recognit. 2000 Mar-Apr;13(2):93–100. doi: 10.1002/(SICI)1099-1352(200003/04)13:2<93::AID-JMR492>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  39. Van Craenenbroeck E., Engelborghs Y. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry. 1999 Apr 20;38(16):5082–5088. doi: 10.1021/bi9821925. [DOI] [PubMed] [Google Scholar]
  40. Winkler T., Kettling U., Koltermann A., Eigen M. Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1375–1378. doi: 10.1073/pnas.96.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wiseman P. W., Petersen N. O. Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys J. 1999 Feb;76(2):963–977. doi: 10.1016/S0006-3495(99)77260-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wohland T., Friedrich K., Hovius R., Vogel H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry. 1999 Jul 6;38(27):8671–8681. doi: 10.1021/bi990366s. [DOI] [PubMed] [Google Scholar]
  43. Zwaal R. F., Comfurius P., Bevers E. M. Lipid-protein interactions in blood coagulation. Biochim Biophys Acta. 1998 Nov 10;1376(3):433–453. doi: 10.1016/s0304-4157(98)00018-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES