Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1791–1801. doi: 10.1016/S0006-3495(01)76149-8

Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex.

J Gao 1, Y Yao 1, T C Squier 1
PMCID: PMC1301368  PMID: 11259292

Abstract

Oxidation of either Met(145) or Met(146) in wheat germ calmodulin (CaM) to methionine sulfoxide prevents the CaM-dependent activation of the plasma membrane (PM) Ca-ATPase (D. Yin, K. Kuczera, and T. C. Squier, 2000, Chem. Res. Toxicol. 13:103-110). To investigate the structural basis for the inhibition of the PM-Ca-ATPase by oxidized CaM (CaM(ox)), we have used circular dichroism (CD) and fluorescence spectroscopy to resolve conformational differences within the complex between CaM and the PM-Ca-ATPase. The similar excited-state lifetime and solvent accessibility of the fluorophore N-1-pyrenyl-maleimide covalently bound to Cys(26) in unoxidized CaM and CaM(ox) indicates that the globular domains within CaM(ox) assume a native-like structure following association with the PM-Ca-ATPase. However, in comparison with oxidized CaM there are increases in the 1) molar ellipticity in the CD spectrum and 2) conformational heterogeneity between the opposing globular domains for CaM(ox) bound to the CaM-binding sequence of the PM-Ca-ATPase. Furthermore, CaM(ox) binds to the PM-Ca-ATPase with high affinity at a distinct, but overlapping, site to that normally occupied by unoxidized CaM. These results suggest that alterations in binding interactions between CaM(ox) and the PM-Ca-ATPase block important structural transitions within the CaM-binding sequence of the PM-Ca-ATPase that are normally associated with enzyme activation.

Full Text

The Full Text of this article is available as a PDF (128.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshar M., Caves L. S., Guimard L., Hubbard R. E., Calas B., Grassy G., Haiech J. Investigating the high affinity and low sequence specificity of calmodulin binding to its targets. J Mol Biol. 1994 Dec 16;244(5):554–571. doi: 10.1006/jmbi.1994.1752. [DOI] [PubMed] [Google Scholar]
  2. Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M., Haas E. Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophys J. 1989 Jun;55(6):1225–1236. doi: 10.1016/S0006-3495(89)82918-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berlett B. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997 Aug 15;272(33):20313–20316. doi: 10.1074/jbc.272.33.20313. [DOI] [PubMed] [Google Scholar]
  5. Blass J. P., Sheu R. K., Gibson G. E. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann N Y Acad Sci. 2000 Apr;903:204–221. doi: 10.1111/j.1749-6632.2000.tb06370.x. [DOI] [PubMed] [Google Scholar]
  6. Browne J. P., Strom M., Martin S. R., Bayley P. M. The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin. Biochemistry. 1997 Aug 5;36(31):9550–9561. doi: 10.1021/bi970460d. [DOI] [PubMed] [Google Scholar]
  7. Chapman E. R., Alexander K., Vorherr T., Carafoli E., Storm D. R. Fluorescence energy transfer analysis of calmodulin-peptide complexes. Biochemistry. 1992 Dec 29;31(51):12819–12825. doi: 10.1021/bi00166a016. [DOI] [PubMed] [Google Scholar]
  8. Chin D., Means A. R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000 Aug;10(8):322–328. doi: 10.1016/s0962-8924(00)01800-6. [DOI] [PubMed] [Google Scholar]
  9. Chin D., Means A. R. Methionine to glutamine substitutions in the C-terminal domain of calmodulin impair the activation of three protein kinases. J Biol Chem. 1996 Nov 29;271(48):30465–30471. doi: 10.1074/jbc.271.48.30465. [DOI] [PubMed] [Google Scholar]
  10. Chin D., Sloan D. J., Quiocho F. A., Means A. R. Functional consequences of truncating amino acid side chains located at a calmodulin-peptide interface. J Biol Chem. 1997 Feb 28;272(9):5510–5513. doi: 10.1074/jbc.272.9.5510. [DOI] [PubMed] [Google Scholar]
  11. Chin D., Winkler K. E., Means A. R. Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I. J Biol Chem. 1997 Dec 12;272(50):31235–31240. doi: 10.1074/jbc.272.50.31235. [DOI] [PubMed] [Google Scholar]
  12. Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
  13. Driver A. S., Kodavanti P. R., Mundy W. R. Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol. 2000 Mar-Apr;22(2):175–181. doi: 10.1016/s0892-0362(99)00069-0. [DOI] [PubMed] [Google Scholar]
  14. Elshorst B., Hennig M., Försterling H., Diener A., Maurer M., Schulte P., Schwalbe H., Griesinger C., Krebs J., Schmid H. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry. 1999 Sep 21;38(38):12320–12332. doi: 10.1021/bi9908235. [DOI] [PubMed] [Google Scholar]
  15. Fairclough R. H., Cantor C. R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 1978;48:347–379. doi: 10.1016/s0076-6879(78)48019-x. [DOI] [PubMed] [Google Scholar]
  16. Falchetto R., Vorherr T., Brunner J., Carafoli E. The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem. 1991 Feb 15;266(5):2930–2936. [PubMed] [Google Scholar]
  17. Ferrington D. A., Sun H., Murray K. K., Costa J., Williams T. D., Bigelow D. J., Squier T. C. Selective degradation of oxidized calmodulin by the 20 S proteasome. J Biol Chem. 2001 Jan 12;276(2):937–943. doi: 10.1074/jbc.M005356200. [DOI] [PubMed] [Google Scholar]
  18. Findlay W. A., Martin S. R., Beckingham K., Bayley P. M. Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides. Biochemistry. 1995 Feb 21;34(7):2087–2094. doi: 10.1021/bi00007a001. [DOI] [PubMed] [Google Scholar]
  19. Gao J., Yin D. H., Yao Y., Sun H., Qin Z., Schöneich C., Williams T. D., Squier T. C. Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J. 1998 Mar;74(3):1115–1134. doi: 10.1016/S0006-3495(98)77830-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gao J., Yin D., Yao Y., Williams T. D., Squier T. C. Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase. Biochemistry. 1998 Jun 30;37(26):9536–9548. doi: 10.1021/bi9803877. [DOI] [PubMed] [Google Scholar]
  21. George S. E., Su Z., Fan D., Wang S., Johnson J. D. The fourth EF-hand of calmodulin and its helix-loop-helix components: impact on calcium binding and enzyme activation. Biochemistry. 1996 Jun 25;35(25):8307–8313. doi: 10.1021/bi960495y. [DOI] [PubMed] [Google Scholar]
  22. Gibson G. E., Park L. C., Zhang H., Sorbi S., Calingasan N. Y. Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Ann N Y Acad Sci. 1999;893:79–94. doi: 10.1111/j.1749-6632.1999.tb07819.x. [DOI] [PubMed] [Google Scholar]
  23. Goldberg J., Nairn A. C., Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell. 1996 Mar 22;84(6):875–887. doi: 10.1016/s0092-8674(00)81066-1. [DOI] [PubMed] [Google Scholar]
  24. Haas E., Katchalski-Katzir E., Steinberg I. Z. Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry. 1978 Nov 14;17(23):5064–5070. doi: 10.1021/bi00616a032. [DOI] [PubMed] [Google Scholar]
  25. Haiech J., Kilhoffer M. C., Lukas T. J., Craig T. A., Roberts D. M., Watterson D. M. Restoration of the calcium binding activity of mutant calmodulins toward normal by the presence of a calmodulin binding structure. J Biol Chem. 1991 Feb 25;266(6):3427–3431. [PubMed] [Google Scholar]
  26. Hinds T. R., Andreasen T. J. Photochemical cross-linking of azidocalmodulin to the (Ca2+ + Mg2+)-ATPase of the erythrocyte membrane. J Biol Chem. 1981 Aug 10;256(15):7877–7882. [PubMed] [Google Scholar]
  27. Hühmer A. F., Gerber N. C., de Montellano P. R., Schöneich C. Peroxynitrite reduction of calmodulin stimulation of neuronal nitric oxide synthase. Chem Res Toxicol. 1996 Mar;9(2):484–491. doi: 10.1021/tx950152l. [DOI] [PubMed] [Google Scholar]
  28. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  29. James P., Maeda M., Fischer R., Verma A. K., Krebs J., Penniston J. T., Carafoli E. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem. 1988 Feb 25;263(6):2905–2910. [PubMed] [Google Scholar]
  30. Jarrett H. W., Kyte J. Human erythrocyte calmodulin. Further chemical characterization and the site of its interaction with the membrane. J Biol Chem. 1979 Sep 10;254(17):8237–8244. [PubMed] [Google Scholar]
  31. Johnson M. L., Faunt L. M. Parameter estimation by least-squares methods. Methods Enzymol. 1992;210:1–37. doi: 10.1016/0076-6879(92)10003-v. [DOI] [PubMed] [Google Scholar]
  32. Kondo R., Tikunova S. B., Cho M. J., Johnson J. D. A point mutation in a plant calmodulin is responsible for its inhibition of nitric-oxide synthase. J Biol Chem. 1999 Dec 17;274(51):36213–36218. doi: 10.1074/jbc.274.51.36213. [DOI] [PubMed] [Google Scholar]
  33. Kosk-Kosicka D., Bzdega T. Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J Biol Chem. 1988 Dec 5;263(34):18184–18189. [PubMed] [Google Scholar]
  34. Lakowicz J. R., Cherek H., Maliwal B. P. Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry. Biochemistry. 1985 Jan 15;24(2):376–383. doi: 10.1021/bi00323a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lakowicz J. R., Gryczyński I., Wiczk W., Kuśba J., Johnson M. L. Correction for incomplete labeling in the measurement of distance distributions by frequency-domain fluorometry. Anal Biochem. 1991 Jun;195(2):243–254. doi: 10.1016/0003-2697(91)90324-m. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  37. Levine R. L., Berlett B. S., Moskovitz J., Mosoni L., Stadtman E. R. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev. 1999 Mar 15;107(3):323–332. doi: 10.1016/s0047-6374(98)00152-3. [DOI] [PubMed] [Google Scholar]
  38. Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15036–15040. doi: 10.1073/pnas.93.26.15036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  40. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  41. Meyer D. F., Mabuchi Y., Grabarek Z. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin. J Biol Chem. 1996 May 10;271(19):11284–11290. doi: 10.1074/jbc.271.19.11284. [DOI] [PubMed] [Google Scholar]
  42. Mukherjea P., Maune J. F., Beckingham K. Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin. Protein Sci. 1996 Mar;5(3):468–477. doi: 10.1002/pro.5560050308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nelson D. P., Kiesow L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H 2 O 2 solutions in the UV). Anal Biochem. 1972 Oct;49(2):474–478. doi: 10.1016/0003-2697(72)90451-4. [DOI] [PubMed] [Google Scholar]
  44. Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
  45. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  46. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  47. Sackett D. L., Kosk-Kosicka D. The active species of plasma membrane Ca2+-ATPase are a dimer and a monomer-calmodulin complex. J Biol Chem. 1996 Apr 26;271(17):9987–9991. doi: 10.1074/jbc.271.17.9987. [DOI] [PubMed] [Google Scholar]
  48. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Strasburg G. M., Hogan M., Birmachu W., Thomas D. D., Louis C. F. Site-specific derivatives of wheat germ calmodulin. Interactions with troponin and sarcoplasmic reticulum. J Biol Chem. 1988 Jan 5;263(1):542–548. [PubMed] [Google Scholar]
  50. Sun H., Gao J., Ferrington D. A., Biesiada H., Williams T. D., Squier T. C. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry. 1999 Jan 5;38(1):105–112. doi: 10.1021/bi981295k. [DOI] [PubMed] [Google Scholar]
  51. Sun H., Squier T. C. Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase. J Biol Chem. 2000 Jan 21;275(3):1731–1738. doi: 10.1074/jbc.275.3.1731. [DOI] [PubMed] [Google Scholar]
  52. Trewhella J. The solution structures of calmodulin and its complexes with synthetic peptides based on target enzyme binding domains. Cell Calcium. 1992 Jun-Jul;13(6-7):377–390. doi: 10.1016/0143-4160(92)90051-s. [DOI] [PubMed] [Google Scholar]
  53. Turrens J. F. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997 Feb;17(1):3–8. doi: 10.1023/a:1027374931887. [DOI] [PubMed] [Google Scholar]
  54. Verkhratsky A., Shmigol A., Kirischuk S., Pronchuk N., Kostyuk P. Age-dependent changes in calcium currents and calcium homeostasis in mammalian neurons. Ann N Y Acad Sci. 1994 Dec 15;747:365–381. doi: 10.1111/j.1749-6632.1994.tb44423.x. [DOI] [PubMed] [Google Scholar]
  55. Viner R. I., Ferrington D. A., Williams T. D., Bigelow D. J., Schöneich C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J. 1999 Jun 15;340(Pt 3):657–669. [PMC free article] [PubMed] [Google Scholar]
  56. Vogt W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med. 1995 Jan;18(1):93–105. doi: 10.1016/0891-5849(94)00158-g. [DOI] [PubMed] [Google Scholar]
  57. Vorherr T., James P., Krebs J., Enyedi A., McCormick D. J., Penniston J. T., Carafoli E. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry. 1990 Jan 16;29(2):355–365. doi: 10.1021/bi00454a008. [DOI] [PubMed] [Google Scholar]
  58. Vorherr T., Kessler T., Hofmann F., Carafoli E. The calmodulin-binding domain mediates the self-association of the plasma membrane Ca2+ pump. J Biol Chem. 1991 Jan 5;266(1):22–27. [PubMed] [Google Scholar]
  59. Yan L. J., Levine R. L., Sohal R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11168–11172. doi: 10.1073/pnas.94.21.11168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yan L. J., Sohal R. S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12896–12901. doi: 10.1073/pnas.95.22.12896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yao Y., Gao J., Squier T. C. Dynamic structure of the calmodulin-binding domain of the plasma membrane Ca-ATPase in native erythrocyte ghost membranes. Biochemistry. 1996 Sep 17;35(37):12015–12028. doi: 10.1021/bi960834n. [DOI] [PubMed] [Google Scholar]
  62. Yao Y., Schöneich C., Squier T. C. Resolution of structural changes associated with calcium activation of calmodulin using frequency domain fluorescence spectroscopy. Biochemistry. 1994 Jun 28;33(25):7797–7810. doi: 10.1021/bi00191a007. [DOI] [PubMed] [Google Scholar]
  63. Yao Y., Squier T. C. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins. Biochemistry. 1996 May 28;35(21):6815–6827. doi: 10.1021/bi960229k. [DOI] [PubMed] [Google Scholar]
  64. Yao Y., Yin D., Jas G. S., Kuczer K., Williams T. D., Schöneich C., Squier T. C. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry. 1996 Feb 27;35(8):2767–2787. doi: 10.1021/bi951712i. [DOI] [PubMed] [Google Scholar]
  65. Yermolaieva O., Brot N., Weissbach H., Heinemann S. H., Hoshi T. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):448–453. doi: 10.1073/pnas.97.1.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Yin D., Kuczera K., Squier T. C. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H(2)O(2) modulates the ability to activate the plasma membrane Ca-ATPase. Chem Res Toxicol. 2000 Feb;13(2):103–110. doi: 10.1021/tx990142a. [DOI] [PubMed] [Google Scholar]
  67. Yin D., Sun H., Weaver R. F., Squier T. C. Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase. Biochemistry. 1999 Oct 12;38(41):13654–13660. doi: 10.1021/bi991152d. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES