Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2515–2526. doi: 10.1016/S0006-3495(01)76223-6

A dynamical model of kinesin-microtubule motility assays.

F Gibbons 1, J F Chauwin 1, M Despósito 1, J V José 1
PMCID: PMC1301441  PMID: 11371430

Abstract

A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154-158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results.

Full Text

The Full Text of this article is available as a PDF (171.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Block S. M., Goldstein L. S., Schnapp B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990 Nov 22;348(6299):348–352. doi: 10.1038/348348a0. [DOI] [PubMed] [Google Scholar]
  2. Coppin C. M., Finer J. T., Spudich J. A., Vale R. D. Measurement of the isometric force exerted by a single kinesin molecule. Biophys J. 1995 Apr;68(4 Suppl):242S–244S. [PMC free article] [PubMed] [Google Scholar]
  3. Coy D. L., Wagenbach M., Howard J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J Biol Chem. 1999 Feb 5;274(6):3667–3671. doi: 10.1074/jbc.274.6.3667. [DOI] [PubMed] [Google Scholar]
  4. Derényi I., Vicsek T. The kinesin walk: a dynamic model with elastically coupled heads. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6775–6779. doi: 10.1073/pnas.93.13.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duke T., Leibler S. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys J. 1996 Sep;71(3):1235–1247. doi: 10.1016/S0006-3495(96)79323-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duke T, Holy TE, Leibler S. "Gliding assays" for motor proteins: A theoretical analysis. Phys Rev Lett. 1995 Jan 9;74(2):330–333. doi: 10.1103/PhysRevLett.74.330. [DOI] [PubMed] [Google Scholar]
  7. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  8. Gliksman N. R., Skibbens R. V., Salmon E. D. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation. Mol Biol Cell. 1993 Oct;4(10):1035–1050. doi: 10.1091/mbc.4.10.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hancock W. O., Howard J. Processivity of the motor protein kinesin requires two heads. J Cell Biol. 1998 Mar 23;140(6):1395–1405. doi: 10.1083/jcb.140.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
  11. Hirokawa N., Pfister K. K., Yorifuji H., Wagner M. C., Brady S. T., Bloom G. S. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989 Mar 10;56(5):867–878. doi: 10.1016/0092-8674(89)90691-0. [DOI] [PubMed] [Google Scholar]
  12. Howard J., Hudspeth A. J., Vale R. D. Movement of microtubules by single kinesin molecules. Nature. 1989 Nov 9;342(6246):154–158. doi: 10.1038/342154a0. [DOI] [PubMed] [Google Scholar]
  13. Hua W., Young E. C., Fleming M. L., Gelles J. Coupling of kinesin steps to ATP hydrolysis. Nature. 1997 Jul 24;388(6640):390–393. doi: 10.1038/41118. [DOI] [PubMed] [Google Scholar]
  14. Hunt A. J., Gittes F., Howard J. The force exerted by a single kinesin molecule against a viscous load. Biophys J. 1994 Aug;67(2):766–781. doi: 10.1016/S0006-3495(94)80537-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hunt A. J., Howard J. Kinesin swivels to permit microtubule movement in any direction. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11653–11657. doi: 10.1073/pnas.90.24.11653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leibler S., Huse D. A. Porters versus rowers: a unified stochastic model of motor proteins. J Cell Biol. 1993 Jun;121(6):1357–1368. doi: 10.1083/jcb.121.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peskin C. S., Oster G. F. Force production by depolymerizing microtubules: load-velocity curves and run-pause statistics. Biophys J. 1995 Dec;69(6):2268–2276. doi: 10.1016/S0006-3495(95)80097-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schnitzer M. J., Block S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997 Jul 24;388(6640):386–390. doi: 10.1038/41111. [DOI] [PubMed] [Google Scholar]
  19. Scholey J. M., Heuser J., Yang J. T., Goldstein L. S. Identification of globular mechanochemical heads of kinesin. Nature. 1989 Mar 23;338(6213):355–357. doi: 10.1038/338355a0. [DOI] [PubMed] [Google Scholar]
  20. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES