Abstract
Mechanosensitive (MS) ion channels are ubiquitous in eukaryotic cell types but baffling because of their contentious physiologies and diverse molecular identities. In some cellular contexts mechanically responsive ion channels are undoubtedly mechanosensory transducers, but it does not follow that all MS channels are mechanotransducers. Here we demonstrate, for an archetypical voltage-gated channel (Shaker-IR; inactivation-removed), robust MS channel behavior. In oocyte patches subjected to stretch, Shaker-IR exhibits both stretch-activation (SA) and stretch-inactivation (SI). SA is seen when prestretch P(open) (set by voltage) is low, and SI is seen when it is high. The stretch effects occur in cell-attached and excised patches at both macroscopic and single-channel levels. Were one ignorant of this particular MS channel's identity, one might propose it had been designed as a sophisticated reporter of bilayer tension. Knowing Shaker-IR's provenance and biology, however, such a suggestion would be absurd. We argue that the MS responses of Shaker-IR reflect not overlooked "mechano-gating" specializations of Shaker, but a common property of multiconformation membrane proteins: inherent susceptibility to bilayer tension. The molecular diversity of MS channels indicates that susceptibility to bilayer tension is hard to design out of dynamic membrane proteins. Presumably the cost of being insusceptible to bilayer tension often outweighs the benefits, especially where the in situ milieu of channels can provide mechanoprotection.
Full Text
The Full Text of this article is available as a PDF (268.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000 Apr;80(2):555–592. doi: 10.1152/physrev.2000.80.2.555. [DOI] [PubMed] [Google Scholar]
- Conti F., Inoue I., Kukita F., Stühmer W. Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J. 1984;11(2):137–147. doi: 10.1007/BF00276629. [DOI] [PubMed] [Google Scholar]
- Elinder F., Arhem P. Effects of gadolinium on ion channels in the myelinated axon of Xenopus laevis: four sites of action. Biophys J. 1994 Jul;67(1):71–83. doi: 10.1016/S0006-3495(94)80456-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franco-Obregón A., Jr, Lansman J. B. Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol. 1994 Dec 1;481(Pt 2):299–309. doi: 10.1113/jphysiol.1994.sp020440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Añoveros J., García J. A., Liu J. D., Corey D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron. 1998 Jun;20(6):1231–1241. doi: 10.1016/s0896-6273(00)80503-6. [DOI] [PubMed] [Google Scholar]
- Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustin M. C., Zhou X. L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science. 1988 Nov 4;242(4879):762–765. doi: 10.1126/science.2460920. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., McBride D. W., Jr Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol. 1997;59:621–631. doi: 10.1146/annurev.physiol.59.1.621. [DOI] [PubMed] [Google Scholar]
- Hoshi T., Zagotta W. N., Aldrich R. W. Shaker potassium channel gating. I: Transitions near the open state. J Gen Physiol. 1994 Feb;103(2):249–278. doi: 10.1085/jgp.103.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
- Hudspeth A. J. How hearing happens. Neuron. 1997 Nov;19(5):947–950. doi: 10.1016/s0896-6273(00)80385-2. [DOI] [PubMed] [Google Scholar]
- Ismailov I. I., Berdiev B. K., Shlyonsky V. G., Benos D. J. Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block. Biophys J. 1997 Mar;72(3):1182–1192. doi: 10.1016/S0006-3495(97)78766-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ji S., John S. A., Lu Y., Weiss J. N. Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit. J Biol Chem. 1998 Jan 16;273(3):1324–1328. doi: 10.1074/jbc.273.3.1324. [DOI] [PubMed] [Google Scholar]
- Langton P. D. Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol. 1993 Nov;471:1–11. doi: 10.1113/jphysiol.1993.sp019887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. J., Kwon S., Lee Y. H., Ahn D. S., Kang B. S. Membrane stretch increases the activity of Ca(2+)-activated K+ channels in rabbit coronary vascular smooth muscles. Yonsei Med J. 2000 Apr;41(2):266–272. doi: 10.3349/ymj.2000.41.2.266. [DOI] [PubMed] [Google Scholar]
- Loots E., Isacoff E. Y. Molecular coupling of S4 to a K(+) channel's slow inactivation gate. J Gen Physiol. 2000 Nov;116(5):623–636. doi: 10.1085/jgp.116.5.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martens J. R., Navarro-Polanco R., Coppock E. A., Nishiyama A., Parshley L., Grobaski T. D., Tamkun M. M. Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem. 2000 Mar 17;275(11):7443–7446. doi: 10.1074/jbc.275.11.7443. [DOI] [PubMed] [Google Scholar]
- Meyer R., Heinemann S. H. Temperature and pressure dependence of Shaker K+ channel N- and C-type inactivation. Eur Biophys J. 1997;26(6):433–445. doi: 10.1007/s002490050098. [DOI] [PubMed] [Google Scholar]
- Morris C. E. Are stretch-sensitive channels in molluscan cells and elsewhere physiological mechanotransducers? Experientia. 1992 Sep 15;48(9):852–858. doi: 10.1007/BF02118418. [DOI] [PubMed] [Google Scholar]
- Morris C. E., Homann U. Cell surface area regulation and membrane tension. J Membr Biol. 2001 Jan 15;179(2):79–102. doi: 10.1007/s002320010040. [DOI] [PubMed] [Google Scholar]
- Morris C. E., Horn R. Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science. 1991 Mar 8;251(4998):1246–1249. doi: 10.1126/science.1706535. [DOI] [PubMed] [Google Scholar]
- Morris C. E., Sigurdson W. J. Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science. 1989 Feb 10;243(4892):807–809. doi: 10.1126/science.2536958. [DOI] [PubMed] [Google Scholar]
- Paoletti P., Ascher P. Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron. 1994 Sep;13(3):645–655. doi: 10.1016/0896-6273(94)90032-9. [DOI] [PubMed] [Google Scholar]
- Patel A. J., Honoré E., Maingret F., Lesage F., Fink M., Duprat F., Lazdunski M. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 1998 Aug 3;17(15):4283–4290. doi: 10.1093/emboj/17.15.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
- Pleumsamran A., Kim D. Membrane stretch augments the cardiac muscarinic K+ channel activity. J Membr Biol. 1995 Dec;148(3):287–297. doi: 10.1007/BF00235046. [DOI] [PubMed] [Google Scholar]
- Sachs F., Morris C. E., Hamill O. Does a stretch-inactivated cation channel integrate osmotic and peptidergic signals? Nat Neurosci. 2000 Sep;3(9):847–848. doi: 10.1038/78730. [DOI] [PubMed] [Google Scholar]
- Sachs F., Morris C. E. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol. 1998;132:1–77. doi: 10.1007/BFb0004985. [DOI] [PubMed] [Google Scholar]
- Small D. L., Morris C. E. Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol. 1994 Aug;267(2 Pt 1):C598–C606. doi: 10.1152/ajpcell.1994.267.2.C598. [DOI] [PubMed] [Google Scholar]
- Small D. L., Morris C. E. Pharmacology of stretch-activated K channels in Lymnaea neurones. Br J Pharmacol. 1995 Jan;114(1):180–186. doi: 10.1111/j.1476-5381.1995.tb14923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sukharev S., Betanzos M., Chiang C. S., Guy H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature. 2001 Feb 8;409(6821):720–724. doi: 10.1038/35055559. [DOI] [PubMed] [Google Scholar]
- Tabarean I. V., Juranka P., Morris C. E. Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys J. 1999 Aug;77(2):758–774. doi: 10.1016/S0006-3495(99)76930-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terakawa S., Nakayama T. Are axoplasmic microtubules necessary for membrane excitation? J Membr Biol. 1985;85(1):65–77. doi: 10.1007/BF01872006. [DOI] [PubMed] [Google Scholar]
- Tytgat J., Daenens P. Effect of lanthanum on voltage-dependent gating of a cloned mammalian neuronal potassium channel. Brain Res. 1997 Feb 28;749(2):232–237. doi: 10.1016/S0006-8993(96)01171-7. [DOI] [PubMed] [Google Scholar]
- Vandorpe D. H., Small D. L., Dabrowski A. R., Morris C. E. FMRFamide and membrane stretch as activators of the Aplysia S-channel. Biophys J. 1994 Jan;66(1):46–58. doi: 10.1016/S0006-3495(94)80749-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan X., Juranka P., Morris C. E. Activation of mechanosensitive currents in traumatized membrane. Am J Physiol. 1999 Feb;276(2 Pt 1):C318–C327. doi: 10.1152/ajpcell.1999.276.2.C318. [DOI] [PubMed] [Google Scholar]
- Wilkinson N. C., Gao F., Hamill O. P. Effects of mechano-gated cation channel blockers on Xenopus oocyte growth and development. J Membr Biol. 1998 Sep 15;165(2):161–174. doi: 10.1007/s002329900430. [DOI] [PubMed] [Google Scholar]
- Yang X. C., Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989 Feb 24;243(4894 Pt 1):1068–1071. doi: 10.1126/science.2466333. [DOI] [PubMed] [Google Scholar]
- Yao W. D., Wu C. F. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons. J Neurophysiol. 1999 May;81(5):2472–2484. doi: 10.1152/jn.1999.81.5.2472. [DOI] [PubMed] [Google Scholar]
- Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science. 2000 Jun 2;288(5471):1604–1607. doi: 10.1126/science.288.5471.1604. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Hamill O. P. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol. 2000 Feb 15;523(Pt 1):101–115. doi: 10.1111/j.1469-7793.2000.00101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]