Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2833–2842. doi: 10.1016/S0006-3495(01)76250-9

Molecular dynamics and binding specificity analysis of the bovine immunodeficiency virus BIV Tat-TAR complex.

C M Reyes 1, R Nifosì 1, A D Frankel 1, P A Kollman 1
PMCID: PMC1301468  PMID: 11371457

Abstract

We have performed molecular dynamics (MD) simulations, with particle-mesh Ewald, explicit waters, and counterions, and binding specificity analyses using combined molecular mechanics and continuum solvent (MM-PBSA) on the bovine immunodeficiency virus (BIV) Tat peptide-TAR RNA complex. The solution structure for the complex was solved independently by Patel and co-workers and Puglisi and co-workers. We investigated the differences in both structures and trajectories, particularly in the formation of the U-A-U base triple, the dynamic flexibility of the Tat peptide, and the interactions at the binding interface. We observed a decrease in RMSD in comparing the final average RNA structures and initial RNA structures of both trajectories, which suggests the convergence of the RNA structures to a MD equilibrated RNA structure. We also calculated the relative binding of different Tat peptide mutants to TAR RNA and found qualitative agreement with experimental studies.

Full Text

The Full Text of this article is available as a PDF (319.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Karn J., Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol. 1995 Oct 20;253(2):313–332. doi: 10.1006/jmbi.1995.0555. [DOI] [PubMed] [Google Scholar]
  2. Bayer P., Kraft M., Ejchart A., Westendorp M., Frank R., Rösch P. Structural studies of HIV-1 Tat protein. J Mol Biol. 1995 Apr 7;247(4):529–535. doi: 10.1006/jmbi.1995.0158. [DOI] [PubMed] [Google Scholar]
  3. Burley S. K., Petsko G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science. 1985 Jul 5;229(4708):23–28. doi: 10.1126/science.3892686. [DOI] [PubMed] [Google Scholar]
  4. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
  5. Cheatham T. E., 3rd, Kollman P. A. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol. 1996 Jun 14;259(3):434–444. doi: 10.1006/jmbi.1996.0330. [DOI] [PubMed] [Google Scholar]
  6. Cheatham T. E., 3rd, Srinivasan J., Case D. A., Kollman P. A. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J Biomol Struct Dyn. 1998 Oct;16(2):265–280. doi: 10.1080/07391102.1998.10508245. [DOI] [PubMed] [Google Scholar]
  7. Chen L., Frankel A. D. A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5077–5081. doi: 10.1073/pnas.92.11.5077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chong L. T., Duan Y., Wang L., Massova I., Kollman P. A. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14330–14335. doi: 10.1073/pnas.96.25.14330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frankel A. D. Fitting peptides into the RNA world. Curr Opin Struct Biol. 2000 Jun;10(3):332–340. doi: 10.1016/s0959-440x(00)00092-0. [DOI] [PubMed] [Google Scholar]
  10. Greenbaum N. L. How Tat targets TAR: structure of the BIV peptide-RNA complex. Structure. 1996 Jan 15;4(1):5–9. doi: 10.1016/S0969-2126(96)00003-2. [DOI] [PubMed] [Google Scholar]
  11. Hermann T., Westhof E. Simulations of the dynamics at an RNA-protein interface. Nat Struct Biol. 1999 Jun;6(6):540–544. doi: 10.1038/9310. [DOI] [PubMed] [Google Scholar]
  12. Jones K. A., Peterlin B. M. Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem. 1994;63:717–743. doi: 10.1146/annurev.bi.63.070194.003441. [DOI] [PubMed] [Google Scholar]
  13. Mujeeb A., Parslow T. G., Yuan Y. C., James T. L. Aqueous solution structure of a hybrid lentiviral Tat peptide and a model of its interaction with HIV-1 TAR RNA. J Biomol Struct Dyn. 1996 Feb;13(4):649–660. doi: 10.1080/07391102.1996.10508877. [DOI] [PubMed] [Google Scholar]
  14. Nifosì R., Reyes C. M., Kollman P. A. Molecular dynamics studies of the HIV-1 TAR and its complex with argininamide. Nucleic Acids Res. 2000 Dec 15;28(24):4944–4955. doi: 10.1093/nar/28.24.4944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science. 1995 Nov 17;270(5239):1200–1203. doi: 10.1126/science.270.5239.1200. [DOI] [PubMed] [Google Scholar]
  16. Puglisi J. D., Chen L., Frankel A. D., Williamson J. R. Role of RNA structure in arginine recognition of TAR RNA. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3680–3684. doi: 10.1073/pnas.90.8.3680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Puglisi J. D., Tan R., Calnan B. J., Frankel A. D., Williamson J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science. 1992 Jul 3;257(5066):76–80. doi: 10.1126/science.1621097. [DOI] [PubMed] [Google Scholar]
  18. Rana T. M., Jeang K. T. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys. 1999 May 15;365(2):175–185. doi: 10.1006/abbi.1999.1206. [DOI] [PubMed] [Google Scholar]
  19. Reyes C. M., Kollman P. A. Investigating the binding specificity of U1A-RNA by computational mutagenesis. J Mol Biol. 2000 Jan 7;295(1):1–6. doi: 10.1006/jmbi.1999.3319. [DOI] [PubMed] [Google Scholar]
  20. Reyes C. M., Kollman P. A. Molecular dynamics studies of U1A-RNA complexes. RNA. 1999 Feb;5(2):235–244. doi: 10.1017/s1355838299981657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reyes C. M., Kollman P. A. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J Mol Biol. 2000 Apr 14;297(5):1145–1158. doi: 10.1006/jmbi.2000.3629. [DOI] [PubMed] [Google Scholar]
  22. Sanner M. F., Olson A. J., Spehner J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996 Mar;38(3):305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  23. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  24. Smith C. A., Crotty S., Harada Y., Frankel A. D. Altering the context of an RNA bulge switches the binding specificities of two viral Tat proteins. Biochemistry. 1998 Jul 28;37(30):10808–10814. doi: 10.1021/bi980382+. [DOI] [PubMed] [Google Scholar]
  25. Smith K. C., Honig B. Evaluation of the conformational free energies of loops in proteins. Proteins. 1994 Feb;18(2):119–132. doi: 10.1002/prot.340180205. [DOI] [PubMed] [Google Scholar]
  26. Srinivasan J., Miller J., Kollman P. A., Case D. A. Continuum solvent studies of the stability of RNA hairpin loops and helices. J Biomol Struct Dyn. 1998 Dec;16(3):671–682. doi: 10.1080/07391102.1998.10508279. [DOI] [PubMed] [Google Scholar]
  27. Sticht H., Willbold D., Bayer P., Ejchart A., Herrmann F., Rosin-Arbesfeld R., Gazit A., Yaniv A., Frank R., Rösch P. Equine infectious anemia virus Tat is a predominantly helical protein. Eur J Biochem. 1993 Dec 15;218(3):973–976. doi: 10.1111/j.1432-1033.1993.tb18455.x. [DOI] [PubMed] [Google Scholar]
  28. Sussman J. L., Lin D., Jiang J., Manning N. O., Prilusky J., Ritter O., Abola E. E. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 1):1078–1084. doi: 10.1107/s0907444998009378. [DOI] [PubMed] [Google Scholar]
  29. Tan R., Frankel A. D. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5282–5286. doi: 10.1073/pnas.92.12.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tang Y., Nilsson L. Molecular dynamics simulations of the complex between human U1A protein and hairpin II of U1 small nuclear RNA and of free RNA in solution. Biophys J. 1999 Sep;77(3):1284–1305. doi: 10.1016/S0006-3495(99)76979-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tao J., Frankel A. D. Specific binding of arginine to TAR RNA. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2723–2726. doi: 10.1073/pnas.89.7.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Willbold D., Metzger A. U., Sticht H., Gallert K. C., Voit R., Dank N., Bayer P., Krauss G., Goody R. S., Rösch P. Equine infectious anemia virus transactivator is a homeodomain-type protein. J Mol Biol. 1998 Apr 10;277(4):749–755. doi: 10.1006/jmbi.1998.1636. [DOI] [PubMed] [Google Scholar]
  33. Ye X., Kumar R. A., Patel D. J. Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. Chem Biol. 1995 Dec;2(12):827–840. doi: 10.1016/1074-5521(95)90089-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES