Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2843–2855. doi: 10.1016/S0006-3495(01)76251-0

Energy transfer in the peridinin chlorophyll-a protein of Amphidinium carterae studied by polarized transient absorption and target analysis.

B P Krueger 1, S S Lampoura 1, I H van Stokkum 1, E Papagiannakis 1, J M Salverda 1, C C Gradinaru 1, D Rutkauskas 1, R G Hiller 1, R van Grondelle 1
PMCID: PMC1301469  PMID: 11371458

Abstract

The peridinin chlorophyll-a protein (PCP) of dinoflagellates differs from the well-studied light-harvesting complexes of purple bacteria and green plants in its large (4:1) carotenoid to chlorophyll ratio and the unusual properties of its primary pigment, the carotenoid peridinin. We utilized ultrafast polarized transient absorption spectroscopy to examine the flow of energy in PCP after initial excitation into the strongly allowed peridinin S2 state. Global and target analysis of the isotropic and anisotropic decays reveals that significant excitation (25-50%) is transferred to chlorophyll-a directly from the peridinin S2 state. Because of overlapping positive and negative features, this pathway was unseen in earlier single-wavelength experiments. In addition, the anisotropy remains constant and high in the peridinin population, indicating that energy transfer from peridinin to peridinin represents a minor or negligible pathway. The carotenoids are also coupled directly to chlorophyll-a via a low-lying singlet state S1 or the recently identified SCT. We model this energy transfer time scale as 2.3 +/- 0.2 ps, driven by a coupling of approximately 47 cm(-1). This coupling strength allows us to estimate that the peridinin S1/SCT donor state transition moment is approximately 3 D.

Full Text

The Full Text of this article is available as a PDF (159.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Damjanović A., Ritz T., Schulten K. Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. Biophys J. 2000 Oct;79(4):1695–1705. doi: 10.1016/S0006-3495(00)76422-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DeCoster B., Christensen R. L., Gebhard R., Lugtenburg J., Farhoosh R., Frank H. A. Low-lying electronic states of carotenoids. Biochim Biophys Acta. 1992 Aug 28;1102(1):107–114. doi: 10.1016/0005-2728(92)90070-i. [DOI] [PubMed] [Google Scholar]
  3. Frank H. A., Cogdell R. J. Carotenoids in photosynthesis. Photochem Photobiol. 1996 Mar;63(3):257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x. [DOI] [PubMed] [Google Scholar]
  4. Frank H. A., Farhoosh R., Aldema M. L., DeCoster B., Christensen R. L., Gebhard R., Lugtenburg J. Carotenoid-to-bacteriochlorophyll singlet energy transfer in carotenoid-incorporated B850 light-harvesting complexes of Rhodobacter sphaeroides R-26.1. Photochem Photobiol. 1993 Jan;57(1):49–55. doi: 10.1111/j.1751-1097.1993.tb02254.x. [DOI] [PubMed] [Google Scholar]
  5. Herek J. L., Polívka T., Pullerits T., Fowler G. J., Hunter C. N., Sundström V. Ultrafast carotenoid band shifts probe structure and dynamics in photosynthetic antenna complexes. Biochemistry. 1998 May 19;37(20):7057–7061. doi: 10.1021/bi980118g. [DOI] [PubMed] [Google Scholar]
  6. Hofmann E., Wrench P. M., Sharples F. P., Hiller R. G., Welte W., Diederichs K. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science. 1996 Jun 21;272(5269):1788–1791. doi: 10.1126/science.272.5269.1788. [DOI] [PubMed] [Google Scholar]
  7. Kleima F. J., Hofmann E., Gobets B., van Stokkum I. H., van Grondelle R., Diederichs K., van Amerongen H. Förster excitation energy transfer in peridinin-chlorophyll-a-protein. Biophys J. 2000 Jan;78(1):344–353. doi: 10.1016/S0006-3495(00)76597-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kleima F. J., Wendling M., Hofmann E., Peterman E. J., van Grondelle R., van Amerongen H. Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry. 2000 May 2;39(17):5184–5195. doi: 10.1021/bi992427s. [DOI] [PubMed] [Google Scholar]
  9. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  10. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  11. Polívka T., Herek J. L., Zigmantas D., Akerlund H. E., Sundström V. Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4914–4917. doi: 10.1073/pnas.96.9.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
  13. Sharples F. P., Wrench P. M., Ou K., Hiller R. G. Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae. Biochim Biophys Acta. 1996 Sep 12;1276(2):117–123. doi: 10.1016/0005-2728(96)00066-7. [DOI] [PubMed] [Google Scholar]
  14. Shreve A. P., Trautman J. K., Frank H. A., Owens T. G., Albrecht A. C. Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta. 1991 Jun 17;1058(2):280–288. doi: 10.1016/s0005-2728(05)80248-8. [DOI] [PubMed] [Google Scholar]
  15. Swayze V. W., 2nd, Andersen A., Arndt S., Rajarethinam R., Fleming F., Sato Y., Andreasen N. C. Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychol Med. 1996 Mar;26(2):381–390. doi: 10.1017/s0033291700034772. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES