Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):25–42. doi: 10.1016/S0006-3495(01)75677-9

Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules.

A Pierres 1, A M Benoliel 1, C Zhu 1, P Bongrand 1
PMCID: PMC1301489  PMID: 11423392

Abstract

The rate and distance-dependence of association between surface-attached molecules may be determined by monitoring the motion of receptor-bearing spheres along ligand-coated surfaces in a flow chamber (Pierres et al., Proc. Natl. Acad. Sci. U.S.A. 95:9256-9261, 1998). Particle arrests reveal bond formation, and the particle-to-surface distance may be estimated from the ratio between the velocity and the wall shear rate. However, several problems are raised. First, data interpretation requires extensive computer simulations. Second, the relevance of standard results from fluid mechanics to micrometer-size particles separated from surfaces by nanometer distances is not fully demonstrated. Third, the wall shear rate must be known with high accuracy. Here we present a simple derivation of an algorithm permitting one to simulate the motion of spheres near a plane in shear flow. We check that theoretical predictions are consistent with the experimental dependence of motion on medium viscosity or particle size, and the requirement for equilibrium particle height distribution to follow Boltzman's law. The determination of the statistical relationship between particle velocity and acceleration allows one to derive the wall shear rate with 1-s(-1) accuracy and the Hamaker constant of interaction between the particle and the wall with a sensitivity better than 10(-21) J. It is demonstrated that the correlation between particle height and mean velocity during a time interval Deltat is maximal when Deltat is about 0.1-0.2 s for a particle of 1.4-microm radius. When the particle-to-surface distance ranges between 10 and 40 nm, the particle height distribution may be obtained with a standard deviation ranging between 8 and 25 nm, provided the average velocity during a 160-ms period of time is determined with 10% accuracy. It is concluded that the flow chamber allows one to detect the formation of individual bonds with a minimal lifetime of 40 ms in presence of a disruptive force of approximately 5 pN and to assess the distance dependence within the tens of nanometer range.

Full Text

The Full Text of this article is available as a PDF (222.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  3. Baumgartner W., Hinterdorfer P., Ness W., Raab A., Vestweber D., Schindler H., Drenckhahn D. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4005–4010. doi: 10.1073/pnas.070052697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  5. Brune D., Kim S. Hydrodynamic steering effects in protein association. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2930–2934. doi: 10.1073/pnas.91.8.2930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang K. C., Hammer D. A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys J. 1999 Mar;76(3):1280–1292. doi: 10.1016/S0006-3495(99)77291-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen S., Springer T. A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J Cell Biol. 1999 Jan 11;144(1):185–200. doi: 10.1083/jcb.144.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chesla S. E., Li P., Nagarajan S., Selvaraj P., Zhu C. The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of FcgammaRIII (CD16). J Biol Chem. 2000 Apr 7;275(14):10235–10246. doi: 10.1074/jbc.275.14.10235. [DOI] [PubMed] [Google Scholar]
  10. Chesla S. E., Selvaraj P., Zhu C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J. 1998 Sep;75(3):1553–1572. doi: 10.1016/S0006-3495(98)74074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dustin M. L. Adhesive bond dynamics in contacts between T lymphocytes and glass-supported planar bilayers reconstituted with the immunoglobulin-related adhesion molecule CD58. J Biol Chem. 1997 Jun 20;272(25):15782–15788. doi: 10.1074/jbc.272.25.15782. [DOI] [PubMed] [Google Scholar]
  12. Dustin M. L., Ferguson L. M., Chan P. Y., Springer T. A., Golan D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol. 1996 Feb;132(3):465–474. doi: 10.1083/jcb.132.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fritz J., Katopodis A. G., Kolbinger F., Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12283–12288. doi: 10.1073/pnas.95.21.12283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gabdoulline R. R., Wade R. C. Simulation of the diffusional association of barnase and barstar. Biophys J. 1997 May;72(5):1917–1929. doi: 10.1016/S0006-3495(97)78838-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Labadia M. E., Jeanfavre D. D., Caviness G. O., Morelock M. M. Molecular regulation of the interaction between leukocyte function-associated antigen-1 and soluble ICAM-1 by divalent metal cations. J Immunol. 1998 Jul 15;161(2):836–842. [PubMed] [Google Scholar]
  19. Mehta P., Cummings R. D., McEver R. P. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem. 1998 Dec 4;273(49):32506–32513. doi: 10.1074/jbc.273.49.32506. [DOI] [PubMed] [Google Scholar]
  20. Nieba L., Krebber A., Plückthun A. Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal Biochem. 1996 Feb 15;234(2):155–165. doi: 10.1006/abio.1996.0067. [DOI] [PubMed] [Google Scholar]
  21. Pierres A., Benoliel A. M., Bongrand P. Measuring bonds between surface-associated molecules. J Immunol Methods. 1996 Sep 27;196(2):105–120. doi: 10.1016/0022-1759(96)00103-2. [DOI] [PubMed] [Google Scholar]
  22. Pierres A., Benoliel A. M., Bongrand P. Measuring the lifetime of bonds made between surface-linked molecules. J Biol Chem. 1995 Nov 3;270(44):26586–26592. doi: 10.1074/jbc.270.44.26586. [DOI] [PubMed] [Google Scholar]
  23. Pierres A., Benoliel A. M., Bongrand P. Studying receptor-mediated cell adhesion at the single molecule level. Cell Adhes Commun. 1998 Jul;5(5):375–395. doi: 10.3109/15419069809010783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pierres A., Benoliel A. M., Bongrand P., van der Merwe P. A. Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15114–15118. doi: 10.1073/pnas.93.26.15114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pierres A., Benoliel A. M., Bongrand P., van der Merwe P. A. The dependence of the association rate of surface-attached adhesion molecules CD2 and CD48 on separation distance. FEBS Lett. 1997 Feb 24;403(3):239–244. doi: 10.1016/s0014-5793(97)00060-4. [DOI] [PubMed] [Google Scholar]
  26. Pierres A., Feracci H., Delmas V., Benoliel A. M., Thiery J. P., Bongrand P. Experimental study of the interaction range and association rate of surface-attached cadherin 11. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9256–9261. doi: 10.1073/pnas.95.16.9256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ramachandran V., Nollert M. U., Qiu H., Liu W. J., Cummings R. D., Zhu C., McEver R. P. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13771–13776. doi: 10.1073/pnas.96.24.13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct. 1997;26:541–566. doi: 10.1146/annurev.biophys.26.1.541. [DOI] [PubMed] [Google Scholar]
  29. Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Willcox B. E., Gao G. F., Wyer J. R., Ladbury J. E., Bell J. I., Jakobsen B. K., van der Merwe P. A. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity. 1999 Mar;10(3):357–365. doi: 10.1016/s1074-7613(00)80035-7. [DOI] [PubMed] [Google Scholar]
  31. Williams T. E., Nagarajan S., Selvaraj P., Zhu C. Concurrent and independent binding of Fcgamma receptors IIa and IIIb to surface-bound IgG. Biophys J. 2000 Oct;79(4):1867–1875. doi: 10.1016/S0006-3495(00)76436-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Williams T. E., Selvaraj P., Zhu C. Concurrent binding to multiple ligands: kinetic rates of CD16b for membrane-bound IgG1 and IgG2. Biophys J. 2000 Oct;79(4):1858–1866. doi: 10.1016/S0006-3495(00)76435-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhu C. Kinetics and mechanics of cell adhesion. J Biomech. 2000 Jan;33(1):23–33. doi: 10.1016/s0021-9290(99)00163-3. [DOI] [PubMed] [Google Scholar]
  34. van der Merwe P. A., Brown M. H., Davis S. J., Barclay A. N. Affinity and kinetic analysis of the interaction of the cell adhesion molecules rat CD2 and CD48. EMBO J. 1993 Dec 15;12(13):4945–4954. doi: 10.1002/j.1460-2075.1993.tb06188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES