Abstract
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells.
Full Text
The Full Text of this article is available as a PDF (403.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D. Total internal reflection fluorescence microscopy. Methods Cell Biol. 1989;30:245–270. doi: 10.1016/s0091-679x(08)60982-6. [DOI] [PubMed] [Google Scholar]
- Bastiaens P. I., Squire A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 1999 Feb;9(2):48–52. doi: 10.1016/s0962-8924(98)01410-x. [DOI] [PubMed] [Google Scholar]
- Cardullo R. A., Agrawal S., Flores C., Zamecnik P. C., Wolf D. E. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8790–8794. doi: 10.1073/pnas.85.23.8790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clegg R. M., Murchie A. I., Zechel A., Lilley D. M. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2994–2998. doi: 10.1073/pnas.90.7.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day R. N., Nordeen S. K., Wan Y. Visualizing protein-protein interactions in the nucleus of the living cell. Mol Endocrinol. 1999 Apr;13(4):517–526. doi: 10.1210/mend.13.4.0259. [DOI] [PubMed] [Google Scholar]
- Eis P. S., Lakowicz J. R. Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide. Biochemistry. 1993 Aug 10;32(31):7981–7993. doi: 10.1021/bi00082a020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gadella T. W., Jr, Jovin T. M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol. 1995 Jun;129(6):1543–1558. doi: 10.1083/jcb.129.6.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinvald A., Haas E., Steinberg I. Z. Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2273–2277. doi: 10.1073/pnas.69.8.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haran G., Haas E., Szpikowska B. K., Mas M. T. Domain motions in phosphoglycerate kinase: determination of interdomain distance distributions by site-specific labeling and time-resolved fluorescence energy transfer. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11764–11768. doi: 10.1073/pnas.89.24.11764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mergny J. L., Boutorine A. S., Garestier T., Belloc F., Rougée M., Bulychev N. V., Koshkin A. A., Bourson J., Lebedev A. V., Valeur B. Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res. 1994 Mar 25;22(6):920–928. doi: 10.1093/nar/22.6.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882–887. doi: 10.1038/42264. [DOI] [PubMed] [Google Scholar]
- Morrison L. E. Time-resolved detection of energy transfer: theory and application to immunoassays. Anal Biochem. 1988 Oct;174(1):101–120. doi: 10.1016/0003-2697(88)90524-6. [DOI] [PubMed] [Google Scholar]
- Ng T., Squire A., Hansra G., Bornancin F., Prevostel C., Hanby A., Harris W., Barnes D., Schmidt S., Mellor H. Imaging protein kinase Calpha activation in cells. Science. 1999 Mar 26;283(5410):2085–2089. doi: 10.1126/science.283.5410.2085. [DOI] [PubMed] [Google Scholar]
- Parkhurst K. M., Parkhurst L. J. Donor-acceptor distance distributions in a double-labeled fluorescent oligonucleotide both as a single strand and in duplexes. Biochemistry. 1995 Jan 10;34(1):293–300. doi: 10.1021/bi00001a036. [DOI] [PubMed] [Google Scholar]
- Sako Y., Minoghchi S., Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol. 2000 Mar;2(3):168–172. doi: 10.1038/35004044. [DOI] [PubMed] [Google Scholar]
- Sixou S., Szoka F. C., Jr, Green G. A., Giusti B., Zon G., Chin D. J. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 1994 Feb 25;22(4):662–668. doi: 10.1093/nar/22.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soper S. A., Legendre B. L., Jr, Williams D. C. On-line fluorescence lifetime determinations in capillary electrophoresis. Anal Chem. 1995 Dec 1;67(23):4358–4365. doi: 10.1021/ac00119a025. [DOI] [PubMed] [Google Scholar]
- Tokunaga M., Kitamura K., Saito K., Iwane A. H., Yanagida T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun. 1997 Jun 9;235(1):47–53. doi: 10.1006/bbrc.1997.6732. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Bacskai B. J., Adams S. R. FRET for studying intracellular signalling. Trends Cell Biol. 1993 Jul;3(7):242–245. doi: 10.1016/0962-8924(93)90124-j. [DOI] [PubMed] [Google Scholar]
- Tsuji A., Koshimoto H., Sato Y., Hirano M., Sei-Iida Y., Kondo S., Ishibashi K. Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J. 2000 Jun;78(6):3260–3274. doi: 10.1016/S0006-3495(00)76862-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verveer P. J., Wouters F. S., Reynolds A. R., Bastiaens P. I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science. 2000 Nov 24;290(5496):1567–1570. doi: 10.1126/science.290.5496.1567. [DOI] [PubMed] [Google Scholar]
