Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):715–724. doi: 10.1016/S0006-3495(01)75736-0

Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase.

K Tai 1, T Shen 1, U Börjesson 1, M Philippopoulos 1, J A McCammon 1
PMCID: PMC1301548  PMID: 11463620

Abstract

A 10-ns molecular dynamics simulation of mouse acetylcholinesterase was analyzed, with special attention paid to the fluctuation in the width of the gorge and opening events of the back door. The trajectory was first verified to ensure its stability. We defined the gorge proper radius as the measure for the extent of gorge opening. We developed an expression of an inter-atom distance representative of the gorge proper radius in terms of projections on the principal components. This revealed the fact that collective motions of many scales contribute to the opening behavior of the gorge. Covariance and correlation results identified the motions of the protein backbone as the gorge opens. In the back-door region, side-chain dihedral angles that define the opening were identified.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  2. Bartolucci C., Perola E., Cellai L., Brufani M., Lamba D. "Back door" opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Biochemistry. 1999 May 4;38(18):5714–5719. doi: 10.1021/bi982723p. [DOI] [PubMed] [Google Scholar]
  3. Becker O. M. Geometric versus topological clustering: an insight into conformation mapping. Proteins. 1997 Feb;27(2):213–226. doi: 10.1002/(sici)1097-0134(199702)27:2<213::aid-prot8>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  4. Bourne Y., Taylor P., Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell. 1995 Nov 3;83(3):503–512. doi: 10.1016/0092-8674(95)90128-0. [DOI] [PubMed] [Google Scholar]
  5. Faerman C., Ripoll D., Bon S., Le Feuvre Y., Morel N., Massoulié J., Sussman J. L., Silman I. Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function. FEBS Lett. 1996 May 13;386(1):65–71. doi: 10.1016/0014-5793(96)00374-2. [DOI] [PubMed] [Google Scholar]
  6. García AE. Large-amplitude nonlinear motions in proteins. Phys Rev Lett. 1992 Apr 27;68(17):2696–2699. doi: 10.1103/PhysRevLett.68.2696. [DOI] [PubMed] [Google Scholar]
  7. Gilson M. K., Straatsma T. P., McCammon J. A., Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. Open "back door" in a molecular dynamics simulation of acetylcholinesterase. Science. 1994 Mar 4;263(5151):1276–1278. doi: 10.1126/science.8122110. [DOI] [PubMed] [Google Scholar]
  8. Karplus M., McCammon J. A. The internal dynamics of globular proteins. CRC Crit Rev Biochem. 1981;9(4):293–349. doi: 10.3109/10409238109105437. [DOI] [PubMed] [Google Scholar]
  9. Kronman C., Ordentlich A., Barak D., Velan B., Shafferman A. The "back door" hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis. J Biol Chem. 1994 Nov 11;269(45):27819–27822. [PubMed] [Google Scholar]
  10. Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5128–5132. doi: 10.1073/pnas.90.11.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shen T. Y., Tai K., McCammon J. A. Statistical analysis of the fractal gating motions of the enzyme acetylcholinesterase. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar 20;63(4 Pt 1):041902–041902. doi: 10.1103/PhysRevE.63.041902. [DOI] [PubMed] [Google Scholar]
  12. Simon S., Le Goff A., Frobert Y., Grassi J., Massoulié J. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door". J Biol Chem. 1999 Sep 24;274(39):27740–27746. doi: 10.1074/jbc.274.39.27740. [DOI] [PubMed] [Google Scholar]
  13. Tara S., Straatsma T. P., McCammon J. A. Mouse acetylcholinesterase unliganded and in complex with huperzine A: a comparison of molecular dynamics simulations. Biopolymers. 1999 Jul;50(1):35–43. doi: 10.1002/(SICI)1097-0282(199907)50:1<35::AID-BIP4>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  14. Zhou H. X., Wlodek S. T., McCammon J. A. Conformation gating as a mechanism for enzyme specificity. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9280–9283. doi: 10.1073/pnas.95.16.9280. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES