Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):983–993. doi: 10.1016/S0006-3495(01)75756-6

Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures.

S J Li 1, Y Yamashita 1, M Yamazaki 1
PMCID: PMC1301568  PMID: 11463640

Abstract

To elucidate effects of electrostatic interactions resulting from surface charges on structures and phase stability of cubic phases of lipid membranes, membranes of 1-monoolein (MO) and dioleoylphosphatidic acid (DOPA) (DOPA/MO membrane) mixtures have been investigated by small-angle x-ray scattering method. As increasing DOPA concentration in the DOPA/MO membrane at 30 wt% lipid concentration, a phase transition from Q(224) to Q(229) phase occurred at 0.6 mol% DOPA, and at and above 25 mol% DOPA, DOPA/MO membranes were in the L(alpha) phase. As NaCl concentration in the bulk phase increased, for 10% DOPA/90% MO membrane in excess water, a Q(229) to Q(224) phase transition occurred at 60 mM NaCl, and then a Q(224) to H(II) phase transition occurred at 1.2 M NaCl. Similarly, for 30% DOPA/70% MO membrane in excess water, at low NaCl concentrations it was in the L(alpha) phase, but at and above 0.50 M NaCl it was in the Q(224) phase, and then at 0.65 M NaCl a Q(224) to H(II) phase transition occurred. These results indicate that the electrostatic interactions in the membrane interface make the Q(229) phase more stable than the Q(224) phase, and that, at larger electrostatic interactions, the L(alpha) phase is more stable than the cubic phases (Q(224) and Q(229)). We have found that the addition of tetradecane to the MO membrane induced a Q(224)-to-H(II) phase transition and also that to the 30% DOPA/70% MO membrane induced an L(alpha)-to-H(II) phase transition. By using these membranes, the effect of the electrostatic interactions resulting from the membrane surface charge (DOPA) on the spontaneous curvature of the monolayer membrane has been investigated. The increase in DOPA concentration in the DOPA/MO membrane reduced the absolute value of spontaneous curvature of the membrane. In the 30% DOPA/70% MO membrane, the absolute value of spontaneous curvature of the membrane increased with an increase in NaCl concentration. On the basis of these new results, the phase stability of DOPA/MO membranes can be reasonably explained by the spontaneous curvature of the monolayer membrane and a curvature elastic energy of the membrane.

Full Text

The Full Text of this article is available as a PDF (259.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ai X., Caffrey M. Membrane protein crystallization in lipidic mesophases: detergent effects. Biophys J. 2000 Jul;79(1):394–405. doi: 10.1016/S0006-3495(00)76301-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson D. M., Gruner S. M., Leibler S. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5364–5368. doi: 10.1073/pnas.85.15.5364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aota-Nakano Y., Li S. J., Yamazaki M. Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. Biochim Biophys Acta. 1999 Nov 9;1461(1):96–102. doi: 10.1016/s0005-2736(99)00156-x. [DOI] [PubMed] [Google Scholar]
  4. Basanez G., Nieva J. L., Rivas E., Alonso A., Goni F. M. Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. Biophys J. 1996 May;70(5):2299–2306. doi: 10.1016/S0006-3495(96)79795-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caffrey M. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction. Biochemistry. 1987 Oct 6;26(20):6349–6363. doi: 10.1021/bi00394a008. [DOI] [PubMed] [Google Scholar]
  6. Chen Z., Rand R. P. Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases. Biophys J. 1998 Feb;74(2 Pt 1):944–952. doi: 10.1016/S0006-3495(98)74017-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Z., Rand R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997 Jul;73(1):267–276. doi: 10.1016/S0006-3495(97)78067-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chung H., Caffrey M. The curvature elastic-energy function of the lipid-water cubic mesophase. Nature. 1994 Mar 17;368(6468):224–226. doi: 10.1038/368224a0. [DOI] [PubMed] [Google Scholar]
  9. Chung H., Caffrey M. The neutral area surface of the cubic mesophase: location and properties. Biophys J. 1994 Feb;66(2 Pt 1):377–381. doi: 10.1016/s0006-3495(94)80787-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colotto A., Epand R. M. Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. Biochemistry. 1997 Jun 24;36(25):7644–7651. doi: 10.1021/bi970382u. [DOI] [PubMed] [Google Scholar]
  11. Colotto A., Martin I., Ruysschaert J. M., Sen A., Hui S. W., Epand R. M. Structural study of the interaction between the SIV fusion peptide and model membranes. Biochemistry. 1996 Jan 23;35(3):980–989. doi: 10.1021/bi951991+. [DOI] [PubMed] [Google Scholar]
  12. Czeslik C., Winter R., Rapp G., Bartels K. Temperature- and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin. Biophys J. 1995 Apr;68(4):1423–1429. doi: 10.1016/S0006-3495(95)80315-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Furuike S., Levadny V. G., Li S. J., Yamazaki M. Low pH induces an interdigitated gel to bilayer gel phase transition in dihexadecylphosphatidylcholine membrane. Biophys J. 1999 Oct;77(4):2015–2023. doi: 10.1016/S0006-3495(99)77042-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gruner S. M., Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem. 1985;14:211–238. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
  15. Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  17. LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532–14535. doi: 10.1073/pnas.93.25.14532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landh T. From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett. 1995 Aug 1;369(1):13–17. doi: 10.1016/0014-5793(95)00660-2. [DOI] [PubMed] [Google Scholar]
  20. Li X., Schick M. Theory of lipid polymorphism: application to phosphatidylethanolamine and phosphatidylserine. Biophys J. 2000 Jan;78(1):34–46. doi: 10.1016/s0006-3495(00)76570-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luzzati V. Biological significance of lipid polymorphism: the cubic phases. Curr Opin Struct Biol. 1997 Oct;7(5):661–668. doi: 10.1016/s0959-440x(97)80075-9. [DOI] [PubMed] [Google Scholar]
  22. Mariani P., Luzzati V., Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 1988 Nov 5;204(1):165–189. doi: 10.1016/0022-2836(88)90607-9. [DOI] [PubMed] [Google Scholar]
  23. Marsh D. Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys J. 1996 May;70(5):2248–2255. doi: 10.1016/S0006-3495(96)79790-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  25. Qiu H., Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000 Feb;21(3):223–234. doi: 10.1016/s0142-9612(99)00126-x. [DOI] [PubMed] [Google Scholar]
  26. Rand R. P., Fuller N. L., Gruner S. M., Parsegian V. A. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 1990 Jan 9;29(1):76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
  27. Rand R. P., Fuller N. L. Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. Biophys J. 1994 Jun;66(6):2127–2138. doi: 10.1016/S0006-3495(94)81008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rummel G, Hardmeyer A, Widmer C, Chiu ML, Nollert P, Locher KP, Pedruzzi I, I, Landau EM, Rosenbusch JP. Lipidic Cubic Phases: New Matrices for the Three-Dimensional Crystallization of Membrane Proteins. J Struct Biol. 1998;121(2):82–91. doi: 10.1006/jsbi.1997.3952. [DOI] [PubMed] [Google Scholar]
  29. Tenchov B., Koynova R., Rapp G. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J. 1998 Aug;75(2):853–866. doi: 10.1016/S0006-3495(98)77574-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamazaki M., Ohshika M., Kashiwagi N., Asano T. Phase transitions of phospholipid vesicles under osmotic stress and in the presence of ethylene glycol. Biophys Chem. 1992 May;43(1):29–37. doi: 10.1016/0301-4622(92)80039-8. [DOI] [PubMed] [Google Scholar]
  31. de Kruijff B. Biomembranes. Lipids beyond the bilayer. Nature. 1997 Mar 13;386(6621):129–130. doi: 10.1038/386129a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES