Abstract
The adsorption of the hydrophobic anion [W(CO)(5)CN](-) to human lymphoid Jurkat cells gave rise to an additional anti-field peak in the rotational spectra of single cells, indicating that the cell membrane displayed a strong dielectric dispersion in the kilohertz to megahertz frequency range. The surface concentration of the adsorbed anion and its translocation rate constant between the two membrane boundaries could be evaluated from the rotation spectra of cells by applying the previously proposed mobile charge model. Similar single-cell electrorotation experiments were performed to examine the effect of phloretin, a dipolar molecule known to influence the dipole potential of membranes, on the transport of [W(CO)(5)CN](-) across the plasma membrane of mammalian cells. The adsorption of [W(CO)(5)CN](-) was significantly reduced by phloretin, which is in reasonable agreement with the known phloretin-induced effects on artificial and biological membranes. The IC(50) for the effect of phloretin on the transport parameters of the lipophilic ion was approximately 10 microM. The results of this study are consistent with the assumption that the binding of phloretin reduces the intrinsic dipole potential of the plasma membrane. The experimental approach developed here allows the quantification of intrinsic dipole potential changes within the plasma membrane of living cells.
Full Text
The Full Text of this article is available as a PDF (107.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antonenko Y. N., Rokitskaya T. I., Kotova E. A. Effect of dipole modifiers on the kinetics of sensitized photoinactivation of gramicidin channels in bilayer lipid membranes. Membr Cell Biol. 1999;13(1):111–120. [PubMed] [Google Scholar]
- Arnold W. M., Zimmermann U., Heiden W., Ahlers J. The influence of tetraphenylborates (hydrophobic anions) on yeast cell electro-rotation. Biochim Biophys Acta. 1988 Jul 7;942(1):96–106. doi: 10.1016/0005-2736(88)90278-7. [DOI] [PubMed] [Google Scholar]
- Awiszus R., Stark G. A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes. II. Phloretin and phloretin analogues. Eur Biophys J. 1988;15(6):321–328. doi: 10.1007/BF00254719. [DOI] [PubMed] [Google Scholar]
- Bakker B. M., Walsh M. C., ter Kuile B. H., Mensonides F. I., Michels P. A., Opperdoes F. R., Westerhoff H. V. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10098–10103. doi: 10.1073/pnas.96.18.10098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechinger B., Seelig J. Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemistry. 1991 Apr 23;30(16):3923–3929. doi: 10.1021/bi00230a017. [DOI] [PubMed] [Google Scholar]
- Benz R., Läuger P. Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim Biophys Acta. 1977 Jul 14;468(2):245–258. doi: 10.1016/0005-2736(77)90118-3. [DOI] [PubMed] [Google Scholar]
- Cladera J., O'Shea P. Intramembrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide. Biophys J. 1998 May;74(5):2434–2442. doi: 10.1016/S0006-3495(98)77951-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke R. J., Kane D. J. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta. 1997 Jan 31;1323(2):223–239. doi: 10.1016/s0005-2736(96)00188-5. [DOI] [PubMed] [Google Scholar]
- Cseh R., Benz R. Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J. 1999 Sep;77(3):1477–1488. doi: 10.1016/S0006-3495(99)76995-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cseh R., Benz R. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone. Biophys J. 1998 Mar;74(3):1399–1408. doi: 10.1016/S0006-3495(98)77852-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cseh R., Hetzer M., Wolf K., Kraus J., Bringmann G., Benz R. Interaction of phloretin with membranes: on the mode of action of phloretin at the water-lipid interface. Eur Biophys J. 2000;29(3):172–183. doi: 10.1007/s002490000082. [DOI] [PubMed] [Google Scholar]
- Deuticke B., Lütkemeier P., Poser B. Influence of phloretin and alcohols on barrier defects in the erythrocyte membrane caused by oxidative injury and electroporation. Biochim Biophys Acta. 1991 Aug 26;1067(2):111–122. doi: 10.1016/0005-2736(91)90032-4. [DOI] [PubMed] [Google Scholar]
- Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuhr G., Kuzmin P. I. Behavior of cells in rotating electric fields with account to surface charges and cell structures. Biophys J. 1986 Nov;50(5):789–795. doi: 10.1016/S0006-3495(86)83519-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gimsa J., Wachner D. A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys J. 1998 Aug;75(2):1107–1116. doi: 10.1016/S0006-3495(98)77600-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goater A. D., Pethig R. Electrorotation and dielectrophoresis. Parasitology. 1998;117 (Suppl):S177–S189. doi: 10.1017/s0031182099004114. [DOI] [PubMed] [Google Scholar]
- Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertel C., Terzi E., Hauser N., Jakob-Rotne R., Seelig J., Kemp J. A. Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9412–9416. doi: 10.1073/pnas.94.17.9412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holzapfel C., Vienken J., Zimmermann U. Rotation of cells in an alternating electric field: theory and experimental proof. J Membr Biol. 1982;67(1):13–26. doi: 10.1007/BF01868644. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., Solomon A. K. Interaction between phloretin and the red blood cell membrane. J Gen Physiol. 1976 Apr;67(4):381–397. doi: 10.1085/jgp.67.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koepsell H., Fritzsch G., Korn K., Madrala A. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements. J Membr Biol. 1990 Mar;114(2):113–132. doi: 10.1007/BF01869093. [DOI] [PubMed] [Google Scholar]
- Krupka R. M. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes. J Membr Biol. 1985;83(1-2):71–80. doi: 10.1007/BF01868739. [DOI] [PubMed] [Google Scholar]
- Kürschner M., Nielsen K., Andersen C., Sukhorukov V. L., Schenk W. A., Benz R., Zimmermann U. Interaction of lipophilic ions with the plasma membrane of mammalian cells studies by electrorotation. Biophys J. 1998 Jun;74(6):3031–3043. doi: 10.1016/s0006-3495(98)78011-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kürschner M., Nielsen K., von Langen J. R., Schenk W. A., Zimmermann U., Sukhorukov V. L. Effect of fluorine substitution on the interaction of lipophilic ions with the plasma membrane of mammalian cells. Biophys J. 2000 Sep;79(3):1490–1497. doi: 10.1016/S0006-3495(00)76400-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohl P., Rokitskaya T. I., Pohl E. E., Saparov S. M. Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements. Biochim Biophys Acta. 1997 Jan 31;1323(2):163–172. doi: 10.1016/s0005-2736(96)00185-x. [DOI] [PubMed] [Google Scholar]
- Qin Z., Szabo G., Cafiso D. S. Anesthetics reduce the magnitude of the membrane dipole potential. Measurements in lipid vesicles using voltage-sensitive spin probes. Biochemistry. 1995 Apr 25;34(16):5536–5543. doi: 10.1021/bi00016a027. [DOI] [PubMed] [Google Scholar]
- Shahabi V., van Rossum G. D. Transport pathways for therapeutic concentrations of lithium in rat liver. J Membr Biol. 1999 Nov 15;172(2):101–111. doi: 10.1007/s002329900588. [DOI] [PubMed] [Google Scholar]
- Sukhorukov V. L., Zimmermann U. Electrorotation of erythrocytes treated with dipicrylamine: mobile charges within the membrane show their "signature" in rotational spectra. J Membr Biol. 1996 Sep;153(2):161–169. doi: 10.1007/s002329900119. [DOI] [PubMed] [Google Scholar]
- Toon M. R., Solomon A. K. Modulation of water and urea transport in human red cells: effects of pH and phloretin. J Membr Biol. 1987;99(3):157–164. doi: 10.1007/BF01995696. [DOI] [PubMed] [Google Scholar]
- Verkman A. S., Solomon A. K. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes. J Gen Physiol. 1980 Jun;75(6):673–692. doi: 10.1085/jgp.75.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verkman A. S. The quenching of an intramembrane fluorescent probe. A method to study the binding and permeation of phloretin through bilayers. Biochim Biophys Acta. 1980 Jul;599(2):370–379. doi: 10.1016/0005-2736(80)90184-4. [DOI] [PubMed] [Google Scholar]
- Wang C. C., Bruner L. J. Lipid-dependent and phloretin-induced modifications of dipicrylamine adsorption by bilayer membranes. Nature. 1978 Mar 16;272(5650):268–270. doi: 10.1038/272268a0. [DOI] [PubMed] [Google Scholar]
- de Levie R., Rangarajan S. K., Seelig P. F., Andersen O. S. On the adsorption of phloretin onto a black lipid membrane. Biophys J. 1979 Feb;25(2 Pt 1):295–300. doi: 10.1016/s0006-3495(79)85292-3. [DOI] [PMC free article] [PubMed] [Google Scholar]