Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1115–1126. doi: 10.1016/S0006-3495(01)75768-2

Probing the structure and dynamics of a DNA hairpin by ultrafast quenching and fluorescence depolarization.

O F Larsen 1, I H van Stokkum 1, B Gobets 1, R van Grondelle 1, H van Amerongen 1
PMCID: PMC1301580  PMID: 11463652

Abstract

DNA hairpins have been investigated in which individual adenines were replaced by their fluorescent analog 2-aminopurine (2AP). The temperature dependence of the time evolution of polarized emission spectra was monitored with picosecond time resolution. Four isotropic decay components for each oligonucleotide indicated the coexistence of at least four conformations. The fluorescence for three of these was significantly quenched, which is explained by hole transfer from 2AP to guanine(s). An approximately 8-ps component is ascribed to direct hole transfer, the approximately 50-ps and approximately 500-ps components are ascribed to structural reorganization, preceding hole transfer. At room temperature, a fraction remains unquenched on a 10-ns timescale, in contrast to higher temperatures, where the flexibility increases. Besides quenching due to base stacking, a second quenching process was needed to describe the data. Evidence for both intrastrand and interstrand hole transfer was found. The extracted probability for stacking between neighboring bases in double-stranded regions was estimated to be approximately 75% at room temperature and approximately 25% at 80 degrees C, demonstrating structural disorder of the DNA. Fluorescence depolarization revealed both local dynamics of the DNA and overall dynamics of the entire oligonucleotide. Upon raising the temperature, the C-N terminus of the hairpin appears to melt first; the rest of the hairpin denatures above the average melting temperature.

Full Text

The Full Text of this article is available as a PDF (119.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruant N., Flatters D., Lavery R., Genest D. From atomic to mesoscopic descriptions of the internal dynamics of DNA. Biophys J. 1999 Nov;77(5):2366–2376. doi: 10.1016/S0006-3495(99)77074-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eggeling C., Fries J. R., Brand L., Günther R., Seidel C. A. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1556–1561. doi: 10.1073/pnas.95.4.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farrer B. T., Thorp H. H. Redox pathways in DNA oxidation: kinetic studies of guanine and sugar oxidation by para-substituted derivatives of oxoruthenium(IV). Inorg Chem. 2000 Jan 10;39(1):44–49. doi: 10.1021/ic990833u. [DOI] [PubMed] [Google Scholar]
  4. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  5. Georghiou S., Bradrick T. D., Philippetis A., Beechem J. M. Large-amplitude picosecond anisotropy decay of the intrinsic fluorescence of double-stranded DNA. Biophys J. 1996 Apr;70(4):1909–1922. doi: 10.1016/S0006-3495(96)79755-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grove A., Galeone A., Mayol L., Geiduschek E. P. Localized DNA flexibility contributes to target site selection by DNA-bending proteins. J Mol Biol. 1996 Jul 12;260(2):120–125. doi: 10.1006/jmbi.1996.0386. [DOI] [PubMed] [Google Scholar]
  7. Guest C. R., Hochstrasser R. A., Sowers L. C., Millar D. P. Dynamics of mismatched base pairs in DNA. Biochemistry. 1991 Apr 2;30(13):3271–3279. doi: 10.1021/bi00227a015. [DOI] [PubMed] [Google Scholar]
  8. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  9. Hochstrasser R. A., Carver T. E., Sowers L. C., Millar D. P. Melting of a DNA helix terminus within the active site of a DNA polymerase. Biochemistry. 1994 Oct 4;33(39):11971–11979. doi: 10.1021/bi00205a036. [DOI] [PubMed] [Google Scholar]
  10. Hogan M. E., Austin R. H. Importance of DNA stiffness in protein-DNA binding specificity. Nature. 1987 Sep 17;329(6136):263–266. doi: 10.1038/329263a0. [DOI] [PubMed] [Google Scholar]
  11. Kelley S. O., Barton J. K. Electron transfer between bases in double helical DNA. Science. 1999 Jan 15;283(5400):375–381. doi: 10.1126/science.283.5400.375. [DOI] [PubMed] [Google Scholar]
  12. Kingsman S. M., Kingsman A. J. The regulation of human immunodeficiency virus type-1 gene expression. Eur J Biochem. 1996 Sep 15;240(3):491–507. doi: 10.1111/j.1432-1033.1996.0491h.x. [DOI] [PubMed] [Google Scholar]
  13. Kleima F. J., Hofmann E., Gobets B., van Stokkum I. H., van Grondelle R., Diederichs K., van Amerongen H. Förster excitation energy transfer in peridinin-chlorophyll-a-protein. Biophys J. 2000 Jan;78(1):344–353. doi: 10.1016/S0006-3495(00)76597-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lacourciere K. A., Stivers J. T., Marino J. P. Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy. Biochemistry. 2000 May 16;39(19):5630–5641. doi: 10.1021/bi992932p. [DOI] [PubMed] [Google Scholar]
  15. Naimushin A. N., Fujimoto B. S., Schurr J. M. Dynamic bending rigidity of a 200-bp DNA in 4 mM ionic strength: a transient polarization grating study. Biophys J. 2000 Mar;78(3):1498–1518. doi: 10.1016/S0006-3495(00)76703-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nordlund T. M., Andersson S., Nilsson L., Rigler R., Gräslund A., McLaughlin L. W. Structure and dynamics of a fluorescent DNA oligomer containing the EcoRI recognition sequence: fluorescence, molecular dynamics, and NMR studies. Biochemistry. 1989 Nov 14;28(23):9095–9103. doi: 10.1021/bi00449a021. [DOI] [PubMed] [Google Scholar]
  17. Nordlund T. M., Xu D., Evans K. O. Excitation energy transfer in DNA: duplex melting and transfer from normal bases to 2-aminopurine. Biochemistry. 1993 Nov 16;32(45):12090–12095. doi: 10.1021/bi00096a020. [DOI] [PubMed] [Google Scholar]
  18. Parkhurst K. M., Parkhurst L. J. Donor-acceptor distance distributions in a double-labeled fluorescent oligonucleotide both as a single strand and in duplexes. Biochemistry. 1995 Jan 10;34(1):293–300. doi: 10.1021/bi00001a036. [DOI] [PubMed] [Google Scholar]
  19. Peterson R. D., Feigon J. Structural change in Rev responsive element RNA of HIV-1 on binding Rev peptide. J Mol Biol. 1996 Dec 20;264(5):863–877. doi: 10.1006/jmbi.1996.0683. [DOI] [PubMed] [Google Scholar]
  20. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  21. Sowers L. C., Fazakerley G. V., Eritja R., Kaplan B. E., Goodman M. F. Base pairing and mutagenesis: observation of a protonated base pair between 2-aminopurine and cytosine in an oligonucleotide by proton NMR. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5434–5438. doi: 10.1073/pnas.83.15.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wan C., Fiebig T., Kelley S. O., Treadway C. R., Barton J. K., Zewail A. H. Femtosecond dynamics of DNA-mediated electron transfer. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6014–6019. doi: 10.1073/pnas.96.11.6014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wan C., Fiebig T., Schiemann O., Barton J. K., Zewail A. H. Femtosecond direct observation of charge transfer between bases in DNA. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14052–14055. doi: 10.1073/pnas.250483297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolffe A. P. Architectural transcription factors. Science. 1994 May 20;264(5162):1100–1101. doi: 10.1126/science.8178167. [DOI] [PubMed] [Google Scholar]
  25. Wu P. G., Nordlund T. M., Gildea B., McLaughlin L. W. Base stacking and unstacking as determined from a DNA decamer containing a fluorescent base. Biochemistry. 1990 Jul 10;29(27):6508–6514. doi: 10.1021/bi00479a024. [DOI] [PubMed] [Google Scholar]
  26. van Stokkum I. H., Linsdell H., Hadden J. M., Haris P. I., Chapman D., Bloemendal M. Temperature-induced changes in protein structures studied by Fourier transform infrared spectroscopy and global analysis. Biochemistry. 1995 Aug 22;34(33):10508–10518. doi: 10.1021/bi00033a024. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES