Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1155–1162. doi: 10.1016/S0006-3495(01)75772-4

Specific binding sites for cations in bacteriorhodopsin.

T Eliash 1, L Weiner 1, M Ottolenghi 1, M Sheves 1
PMCID: PMC1301584  PMID: 11463656

Abstract

The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible for the transition from the purple form (lambda(max) = 570 nm) to the blue form (lambda(max) = 605 nm) of bR. This transition can also be induced by deionization (cation removal). It was previously proposed that the cations bind to the bR surface and raise the surface pH, or bind to a specific site in the protein, probably in the retinal vicinity. We have reexamined these possibilities by evaluating the interaction between Mn(2+) and a nitroxyl radical probe covalently bound to several mutants in which protein residues were substituted by cystein. We have found that Mn(2+), which binds to the highest-affinity binding site, significantly affects the EPR spectrum of a spin label attached to residue 74C. Therefore, it is concluded that the highest-affinity binding site is located in the extracellular side of the protein and its distance from the spin label at 74C is estimated to be approximately 9.8 +/- 0.7 A. At least part of the three to four low-affinity cation binding sites are located in the cytoplasmic side, because Mn(2+) bound to these binding sites affects spin labels attached to residues 103C and 163C located in the cytoplasmic side of the protein. The results indicate specific binding sites for the color-controlling cations, and suggest that the binding sites involve negatively charged lipids located on the exterior of the bR trimer structure.

Full Text

The Full Text of this article is available as a PDF (111.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharoni A., Weiner L., Ottolenghi M., Sheves M. Bacteriorhodpsin experiences light-induced conformational alterations in nonisomerizable C(13)=C(14) pigments. A study with EPR. J Biol Chem. 2000 Jul 14;275(28):21010–21016. doi: 10.1074/jbc.M001208200. [DOI] [PubMed] [Google Scholar]
  2. Albeck A., Friedman N., Sheves M., Ottolenghi M. Factors affecting the absorption maxima of acidic forms of bacteriorhodopsin. A study with artificial pigments. Biophys J. 1989 Dec;56(6):1259–1265. doi: 10.1016/S0006-3495(89)82773-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alexiev U., Mollaaghababa R., Scherrer P., Khorana H. G., Heyn M. P. Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):372–376. doi: 10.1073/pnas.92.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ariki M., Lanyi J. K. Characterization of metal ion-binding sites in bacteriorhodopsin. J Biol Chem. 1986 Jun 25;261(18):8167–8174. [PubMed] [Google Scholar]
  5. Chang C. H., Chen J. G., Govindjee R., Ebrey T. Cation binding by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1985 Jan;82(2):396–400. doi: 10.1073/pnas.82.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohn M., Diefenbach H., Taylor J. S. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes. J Biol Chem. 1971 Oct 10;246(19):6037–6042. [PubMed] [Google Scholar]
  7. Dupuis P., Corcoran T. C., El-Sayed M. A. Importance of bound divalent cations to the tyrosine deprotonation during the photocycle of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3662–3664. doi: 10.1073/pnas.82.11.3662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edgerton M. E., Moore T. A., Greenwood C. Investigations into the effect of acid on the spectral and kinetic properties of purple membrane from Halobacterium halobium. Biochem J. 1980 Sep 1;189(3):413–420. doi: 10.1042/bj1890413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eliash T., Ottolenghi M., Sheves M. The titrations of Asp-85 and of the cation binding residues in bacteriorhodopsin are not coupled. FEBS Lett. 1999 Mar 26;447(2-3):307–310. doi: 10.1016/s0014-5793(99)00289-6. [DOI] [PubMed] [Google Scholar]
  10. Essen L., Siegert R., Lehmann W. D., Oesterhelt D. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11673–11678. doi: 10.1073/pnas.95.20.11673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fischer U., Oesterhelt D. Chromophore equilibria in bacteriorhodopsin. Biophys J. 1979 Nov;28(2):211–230. doi: 10.1016/S0006-3495(79)85172-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fu X., Bressler S., Ottolenghi M., Eliash T., Friedman N., Sheves M. Titration kinetics of Asp-85 in bacteriorhodopsin: exclusion of the retinal pocket as the color-controlling cation binding site. FEBS Lett. 1997 Oct 20;416(2):167–170. doi: 10.1016/s0014-5793(97)01194-0. [DOI] [PubMed] [Google Scholar]
  13. Grigorieff N., Beckmann E., Zemlin F. Lipid location in deoxycholate-treated purple membrane at 2.6 A. J Mol Biol. 1995 Dec 1;254(3):404–415. doi: 10.1006/jmbi.1995.0627. [DOI] [PubMed] [Google Scholar]
  14. Haupts U., Tittor J., Oesterhelt D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct. 1999;28:367–399. doi: 10.1146/annurev.biophys.28.1.367. [DOI] [PubMed] [Google Scholar]
  15. Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 1994 Aug 4;370(6488):379–382. doi: 10.1038/370379a0. [DOI] [PubMed] [Google Scholar]
  16. Hill K. A., Steiner S. A., Castellino F. J. Estimation of the distance between the divalent cation binding site of des-1-41-light chain-activated bovine plasma protein C and a nitroxide spin label attached to the active-site serine residue. Biochem J. 1988 Apr 1;251(1):229–236. doi: 10.1042/bj2510229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jonas R., Ebrey T. G. Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):149–153. doi: 10.1073/pnas.88.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kimura Y., Ikegami A., Stoeckenius W. Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem Photobiol. 1984 Nov;40(5):641–646. doi: 10.1111/j.1751-1097.1984.tb05353.x. [DOI] [PubMed] [Google Scholar]
  19. Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K., Murata K., Hirai T., Fujiyoshi Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature. 1997 Sep 11;389(6647):206–211. doi: 10.1038/38323. [DOI] [PubMed] [Google Scholar]
  20. Lanyi J. K. Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem. 1997 Dec 12;272(50):31209–31212. doi: 10.1074/jbc.272.50.31209. [DOI] [PubMed] [Google Scholar]
  21. Luecke H., Richter H. T., Lanyi J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science. 1998 Jun 19;280(5371):1934–1937. doi: 10.1126/science.280.5371.1934. [DOI] [PubMed] [Google Scholar]
  22. Metz G., Siebert F., Engelhard M. Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state 13C CP-MAS NMR investigation. FEBS Lett. 1992 Jun 1;303(2-3):237–241. doi: 10.1016/0014-5793(92)80528-o. [DOI] [PubMed] [Google Scholar]
  23. Moltke S., Heyn M. P. Photovoltage kinetics of the acid-blue and acid-purple forms of bacteriorhodopsin: evidence for no net charge transfer. Biophys J. 1995 Nov;69(5):2066–2073. doi: 10.1016/S0006-3495(95)80077-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mowery P. C., Lozier R. H., Chae Q., Tseng Y. W., Taylor M., Stoeckenius W. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry. 1979 Sep 18;18(19):4100–4107. doi: 10.1021/bi00586a007. [DOI] [PubMed] [Google Scholar]
  25. Nasuda-Kouyama A., Fukuda K., Iio T., Kouyama T. Effect of a light-induced pH gradient on purple-to-blue and purple-to-red transitions of bacteriorhodopsin. Biochemistry. 1990 Jul 24;29(29):6778–6788. doi: 10.1021/bi00481a005. [DOI] [PubMed] [Google Scholar]
  26. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  27. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  28. Padrós E., Duñach M., Sabés M. Induction of the blue form of bacteriorhodopsin by low concentrations of sodium dodecyl sulfate. Biochim Biophys Acta. 1984 Jan 11;769(1):1–7. doi: 10.1016/0005-2736(84)90002-6. [DOI] [PubMed] [Google Scholar]
  29. Pardo L., Sepulcre F., Cladera J., Duñach M., Labarta A., Tejada J., Padrós E. Experimental and theoretical characterization of the high-affinity cation-binding site of the purple membrane. Biophys J. 1998 Aug;75(2):777–784. doi: 10.1016/S0006-3495(98)77567-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  31. Szundi I., Stoeckenius W. Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3681–3684. doi: 10.1073/pnas.84.11.3681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Szundi I., Stoeckenius W. Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment. Biophys J. 1988 Aug;54(2):227–232. doi: 10.1016/S0006-3495(88)82951-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Szundi I., Stoeckenius W. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface. Biophys J. 1989 Aug;56(2):369–383. doi: 10.1016/S0006-3495(89)82683-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tuzi S., Yamaguchi S., Tanio M., Konishi H., Inoue S., Naito A., Needleman R., Lanyi J. K., Saitô H. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J. 1999 Mar;76(3):1523–1531. doi: 10.1016/S0006-3495(99)77311-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Voss J., Salwiński L., Kaback H. R., Hubbell W. L. A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12295–12299. doi: 10.1073/pnas.92.26.12295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Váró G., Brown L. S., Needleman R., Lanyi J. K. Binding of calcium ions to bacteriorhodopsin. Biophys J. 1999 Jun;76(6):3219–3226. doi: 10.1016/S0006-3495(99)77473-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Váró G., Lanyi J. K. Photoreactions of bacteriorhodopsin at acid pH. Biophys J. 1989 Dec;56(6):1143–1151. doi: 10.1016/S0006-3495(89)82761-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang D., el-Sayed M. A. The Ca2+ binding to deionized monomerized and to retinal removed bacteriorhodopsin. Biophys J. 1995 Nov;69(5):2056–2059. doi: 10.1016/S0006-3495(95)80075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang N. Y., el-Sayed M. A. The C-terminus and the Ca2+ low-affinity binding sites in bacteriorhodopsin. Biochemistry. 1993 Dec 28;32(51):14173–14175. doi: 10.1021/bi00214a015. [DOI] [PubMed] [Google Scholar]
  40. Zhang Y. N., Sweetman L. L., Awad E. S., El-Sayed M. A. Nature of the individual Ca binding sites in Ca-regenerated bacteriorhodopsin. Biophys J. 1992 May;61(5):1201–1206. doi: 10.1016/S0006-3495(92)81929-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang Y. N., el-Sayed M. A., Bonet M. L., Lanyi J. K., Chang M., Ni B., Needleman R. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1445–1449. doi: 10.1073/pnas.90.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES