Abstract
We quantitatively describe an RNA molecule under the influence of an external force exerted at its two ends as in a typical single-molecule experiment. Our calculation incorporates the interactions between nucleotides by using the experimentally determined free energy rules for RNA secondary structure and models the polymeric properties of the exterior single-stranded regions explicitly as elastic freely jointed chains. We find that despite complicated secondary structures, force-extension curves are typically smooth in quasi-equilibrium. We identify and characterize two sequence/structure-dependent mechanisms that, in addition to the sequence-independent entropic elasticity of the exterior single-stranded regions, are responsible for the smoothness. These involve compensation between different structural elements on which the external force acts simultaneously and contribution of suboptimal structures, respectively. We estimate how many features a force-extension curve recorded in nonequilibrium, where the pulling proceeds faster than rearrangements in the secondary structure of the molecule, could show in principle. Our software is available to the public through an "RNA-pulling server."
Full Text
The Full Text of this article is available as a PDF (131.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonnet G., Krichevsky O., Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8602–8606. doi: 10.1073/pnas.95.15.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S. J., Dill K. A. RNA folding energy landscapes. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):646–651. doi: 10.1073/pnas.97.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Essevaz-Roulet B., Bockelmann U., Heslot F. Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11935–11940. doi: 10.1073/pnas.94.22.11935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isambert H., Siggia E. D. Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6515–6520. doi: 10.1073/pnas.110533697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lubensky D. K., Nelson D. R. Pulling pinned polymers and unzipping DNA. Phys Rev Lett. 2000 Aug 14;85(7):1572–1575. doi: 10.1103/PhysRevLett.85.1572. [DOI] [PubMed] [Google Scholar]
- Maier B., Bensimon D., Croquette V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12002–12007. doi: 10.1073/pnas.97.22.12002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
- McCaskill J. S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers. 1990 May-Jun;29(6-7):1105–1119. doi: 10.1002/bip.360290621. [DOI] [PubMed] [Google Scholar]
- Mehta A. D., Rief M., Spudich J. A., Smith D. A., Simmons R. M. Single-molecule biomechanics with optical methods. Science. 1999 Mar 12;283(5408):1689–1695. doi: 10.1126/science.283.5408.1689. [DOI] [PubMed] [Google Scholar]
- Montanari A., Mézard M. Hairpin formation and elongation of biomolecules. Phys Rev Lett. 2001 Mar 5;86(10):2178–2181. doi: 10.1103/PhysRevLett.86.2178. [DOI] [PubMed] [Google Scholar]
- Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
- Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
- Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
- Thirumalai D., Woodson S. A. Maximizing RNA folding rates: a balancing act. RNA. 2000 Jun;6(6):790–794. doi: 10.1017/s1355838200000522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinoco I., Jr, Bustamante C. How RNA folds. J Mol Biol. 1999 Oct 22;293(2):271–281. doi: 10.1006/jmbi.1999.3001. [DOI] [PubMed] [Google Scholar]
- Walter A. E., Turner D. H., Kim J., Lyttle M. H., Müller P., Mathews D. H., Zuker M. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218–9222. doi: 10.1073/pnas.91.20.9218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang G., Cecconi C., Baase W. A., Vetter I. R., Breyer W. A., Haack J. A., Matthews B. W., Dahlquist F. W., Bustamante C. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):139–144. doi: 10.1073/pnas.97.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]