Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1464–1474. doi: 10.1016/S0006-3495(01)75801-8

Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion.

N Kahya 1, E I Pécheur 1, W P de Boeij 1, D A Wiersma 1, D Hoekstra 1
PMCID: PMC1301625  PMID: 11509360

Abstract

In this work, we present a protocol to reconstitute membrane proteins into giant unilamellar vesicles (GUV) via peptide-induced fusion. In principle, GUV provide a well-defined lipid matrix, resembling a close-to-native state for biophysical studies, including optical microspectroscopy, of transmembrane proteins at the molecular level. Furthermore, reconstitution in this manner would also eliminate potential artifacts arising from secondary interactions of proteins, when reconstituted in planar membranes supported on solid surfaces. However, assembly procedures of GUV preclude direct reconstitution. Here, for the first time, a method is described that allows the controlled incorporation of membrane proteins into GUV. We demonstrate that large unilamellar vesicles (LUV, diameter 0.1 microm), to which the small fusogenic peptide WAE has been covalently attached, readily fuse with GUV, as revealed by monitoring lipid and contents mixing by fluorescence microscopy. To monitor contents mixing, a new fluorescence-based enzymatic assay was devised. Fusion does not introduce changes in the membrane morphology, as shown by fluorescence correlation spectroscopy. Analysis of fluorescence confocal imaging intensity revealed that approximately 6 to 10 LUV fused per microm(2) of GUV surface. As a model protein, bacteriorhodopsin (BR) was reconstituted into GUV, using LUV into which BR was incorporated via detergent dialysis. BR did not affect GUV-LUV fusion and the protein was stably inserted into the GUV and functionally active. Fluorescence correlation spectroscopy experiments show that BR inserted into GUV undergoes unrestricted Brownian motion with a diffusion coefficient of 1.2 microm(2)/s. The current procedure offers new opportunities to address issues related to membrane-protein structure and dynamics in a close-to-native state.

Full Text

The Full Text of this article is available as a PDF (320.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deniz A. A., Laurence T. A., Beligere G. S., Dahan M., Martin A. B., Chemla D. S., Dawson P. E., Schultz P. G., Weiss S. Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5179–5184. doi: 10.1073/pnas.090104997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eigen M., Rigler R. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5740–5747. doi: 10.1073/pnas.91.13.5740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  5. Harms G. S., Sonnleitner M., Schütz G. J., Gruber H. J., Schmidt T. Single-molecule anisotropy imaging. Biophys J. 1999 Nov;77(5):2864–2870. doi: 10.1016/S0006-3495(99)77118-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hinterdorfer P., Baber G., Tamm L. K. Reconstitution of membrane fusion sites. A total internal reflection fluorescence microscopy study of influenza hemagglutinin-mediated membrane fusion. J Biol Chem. 1994 Aug 12;269(32):20360–20368. [PubMed] [Google Scholar]
  7. Martin I., Pécheur E. I., Ruysschaert J. M., Hoekstra D. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers. Biochemistry. 1999 Jul 20;38(29):9337–9347. doi: 10.1021/bi9829534. [DOI] [PubMed] [Google Scholar]
  8. Mathivet L., Cribier S., Devaux P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J. 1996 Mar;70(3):1112–1121. doi: 10.1016/S0006-3495(96)79693-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  10. Pécheur E. I., Hoekstra D., Sainte-Marie J., Maurin L., Bienvenüe A., Philippot J. R. Membrane anchorage brings about fusogenic properties in a short synthetic peptide. Biochemistry. 1997 Apr 1;36(13):3773–3781. doi: 10.1021/bi9622128. [DOI] [PubMed] [Google Scholar]
  11. Pécheur E. I., Sainte-Marie J., Bienvenüe A., Hoekstra D. Lipid headgroup spacing and peptide penetration, but not peptide oligomerization, modulate peptide-induced fusion. Biochemistry. 1999 Jan 5;38(1):364–373. doi: 10.1021/bi981389u. [DOI] [PubMed] [Google Scholar]
  12. Rigaud J. L., Paternostre M. T., Bluzat A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry. 1988 Apr 19;27(8):2677–2688. doi: 10.1021/bi00408a007. [DOI] [PubMed] [Google Scholar]
  13. Rigler R. Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J Biotechnol. 1995 Jul 31;41(2-3):177–186. doi: 10.1016/0168-1656(95)00054-t. [DOI] [PubMed] [Google Scholar]
  14. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996 Jan 5;271(5245):43–48. doi: 10.1126/science.271.5245.43. [DOI] [PubMed] [Google Scholar]
  15. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  16. Schmidt T., Schütz G. J., Baumgartner W., Gruber H. J., Schindler H. Imaging of single molecule diffusion. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2926–2929. doi: 10.1073/pnas.93.7.2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwille P., Korlach J., Webb W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry. 1999 Jul 1;36(3):176–182. doi: 10.1002/(sici)1097-0320(19990701)36:3<176::aid-cyto5>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  18. Schütz G. J., Kada G., Pastushenko V. P., Schindler H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 2000 Mar 1;19(5):892–901. doi: 10.1093/emboj/19.5.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  20. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  21. Sonnleitner A., Schütz G. J., Schmidt T. Free Brownian motion of individual lipid molecules in biomembranes. Biophys J. 1999 Nov;77(5):2638–2642. doi: 10.1016/S0006-3495(99)77097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Voorst F., De Kruijff B. Role of lipids in the translocation of proteins across membranes. Biochem J. 2000 May 1;347(Pt 3):601–612. doi: 10.1042/0264-6021:3470601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagner M. L., Tamm L. K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J. 2000 Sep;79(3):1400–1414. doi: 10.1016/S0006-3495(00)76392-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xie X. S., Lu H. P. Single-molecule enzymology. J Biol Chem. 1999 Jun 4;274(23):15967–15970. doi: 10.1074/jbc.274.23.15967. [DOI] [PubMed] [Google Scholar]
  25. Xie X. S., Trautman J. K. Optical studies of single molecules at room temperature. Annu Rev Phys Chem. 1998;49:441–480. doi: 10.1146/annurev.physchem.49.1.441. [DOI] [PubMed] [Google Scholar]
  26. Zimmerberg J., Vogel S. S., Chernomordik L. V. Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct. 1993;22:433–466. doi: 10.1146/annurev.bb.22.060193.002245. [DOI] [PubMed] [Google Scholar]
  27. van der Woude I., Wagenaar A., Meekel A. A., ter Beest M. B., Ruiters M. H., Engberts J. B., Hoekstra D. Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1160–1165. doi: 10.1073/pnas.94.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES