Abstract
Molecular dynamics simulation, quasielastic neutron scattering and analytical theory are combined to characterize diffusive motions in a hydrated protein, C-phycocyanin. The simulation-derived scattering function is in approximate agreement with experiment and is decomposed to determine the essential contributions. It is found that the geometry of the atomic motions can be modeled as diffusion in spheres with a distribution of radii. The time dependence of the dynamics follows stretched exponential behavior, reflecting a distribution of relaxation times. The average side chain and backbone dynamics are quantified and compared. The dynamical parameters are shown to present a smooth variation with distance from the core of the protein. Moving outward from the center of the protein there is a progressive increase of the mean sphere size, accompanied by a narrowing and shifting to shorter times of the relaxation time distribution. This smooth, "radially softening" dynamics may have important consequences for protein function. It also raises the possibility that the dynamical or "glass" transition with temperature observed experimentally in proteins might be depth dependent, involving, as the temperature decreases, progressive freezing out of the anharmonic dynamics with increasing distance from the center of the protein.
Full Text
The Full Text of this article is available as a PDF (170.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amadei A., de Groot B. L., Ceruso M. A., Paci M., Di Nola A., Berendsen H. J. A kinetic model for the internal motions of proteins: diffusion between multiple harmonic wells. Proteins. 1999 May 15;35(3):283–292. [PubMed] [Google Scholar]
- Ansari A., Berendzen J., Braunstein D., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E., Johnson J. B., Ormos P., Sauke T. B. Rebinding and relaxation in the myoglobin pocket. Biophys Chem. 1987 May 9;26(2-3):337–355. doi: 10.1016/0301-4622(87)80034-0. [DOI] [PubMed] [Google Scholar]
- Balabin I. A., Onuchic J. N. Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science. 2000 Oct 6;290(5489):114–117. doi: 10.1126/science.290.5489.114. [DOI] [PubMed] [Google Scholar]
- Bellissent-Funel M. C., Filabozzi A., Chen S. H. Measurement of coherent Debye-Waller factor in in vivo deuterated C-phycocyanin by inelastic neutron scattering. Biophys J. 1997 Apr;72(4):1792–1799. doi: 10.1016/S0006-3495(97)78825-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bu Z., Neumann D. A., Lee S. H., Brown C. M., Engelman D. M., Han C. C. A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering. J Mol Biol. 2000 Aug 11;301(2):525–536. doi: 10.1006/jmbi.2000.3978. [DOI] [PubMed] [Google Scholar]
- Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J. 1999 Feb;76(2):1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cusack S., Smith J., Finney J., Tidor B., Karplus M. Inelastic neutron scattering analysis of picosecond internal protein dynamics. Comparison of harmonic theory with experiment. J Mol Biol. 1988 Aug 20;202(4):903–908. doi: 10.1016/0022-2836(88)90566-9. [DOI] [PubMed] [Google Scholar]
- Daggett V., Li A., Itzhaki L. S., Otzen D. E., Fersht A. R. Structure of the transition state for folding of a protein derived from experiment and simulation. J Mol Biol. 1996 Mar 29;257(2):430–440. doi: 10.1006/jmbi.1996.0173. [DOI] [PubMed] [Google Scholar]
- Daniel R. M., Finney J. L., Réat V., Dunn R., Ferrand M., Smith J. C. Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution. Biophys J. 1999 Oct;77(4):2184–2190. doi: 10.1016/S0006-3495(99)77058-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel R. M., Smith J. C., Ferrand M., Héry S., Dunn R., Finney J. L. Enzyme activity below the dynamical transition at 220 K. Biophys J. 1998 Nov;75(5):2504–2507. doi: 10.1016/S0006-3495(98)77694-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daragan V. A., Mayo K. H. Tri- and diglycine backbone rotational dynamics investigated by 13C NMR multiplet relaxation and molecular dynamics simulations. Biochemistry. 1993 Nov 2;32(43):11488–11499. doi: 10.1021/bi00094a004. [DOI] [PubMed] [Google Scholar]
- Diehl M., Doster W., Petry W., Schober H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys J. 1997 Nov;73(5):2726–2732. doi: 10.1016/S0006-3495(97)78301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn R. V., Réat V., Finney J., Ferrand M., Smith J. C., Daniel R. M. Enzyme activity and dynamics: xylanase activity in the absence of fast anharmonic dynamics. Biochem J. 2000 Mar 1;346(Pt 2):355–358. [PMC free article] [PubMed] [Google Scholar]
- Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
- Feng W., Tejero R., Zimmerman D. E., Inouye M., Montelione G. T. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry. 1998 Aug 4;37(31):10881–10896. doi: 10.1021/bi980269j. [DOI] [PubMed] [Google Scholar]
- Ferrand M., Dianoux A. J., Petry W., Zaccaï G. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitter J., Ernst O. P., Hauss T., Lechner R. E., Hofmann K. P., Dencher N. A. Molecular motions and hydration of purple membranes and disk membranes studied by neutron scattering. Eur Biophys J. 1998;27(6):638–645. doi: 10.1007/s002490050175. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Goldstein R. A., Luthey-Schulten Z. A., Wolynes P. G. Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9029–9033. doi: 10.1073/pnas.89.19.9029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harata K., Abe Y., Muraki M. Crystallographic evaluation of internal motion of human alpha-lactalbumin refined by full-matrix least-squares method. J Mol Biol. 1999 Mar 26;287(2):347–358. doi: 10.1006/jmbi.1999.2598. [DOI] [PubMed] [Google Scholar]
- Hayward S., Kitao A., Go N. Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins. 1995 Oct;23(2):177–186. doi: 10.1002/prot.340230207. [DOI] [PubMed] [Google Scholar]
- Heikal A. A., Hess S. T., Baird G. S., Tsien R. Y., Webb W. W. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11996–12001. doi: 10.1073/pnas.97.22.11996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kneller G. R., Smith J. C. Liquid-like side-chain dynamics in myoglobin. J Mol Biol. 1994 Sep 23;242(3):181–185. doi: 10.1006/jmbi.1994.1570. [DOI] [PubMed] [Google Scholar]
- Kurzyński M. A synthetic picture of intramolecular dynamics of proteins. Towards a contemporary statistical theory of biochemical processes. Prog Biophys Mol Biol. 1998;69(1):23–82. doi: 10.1016/s0079-6107(97)00033-3. [DOI] [PubMed] [Google Scholar]
- Loh A. P., Guo W., Nicholson L. K., Oswald R. E. Backbone dynamics of inactive, active, and effector-bound Cdc42Hs from measurements of (15)N relaxation parameters at multiple field strengths. Biochemistry. 1999 Sep 28;38(39):12547–12557. doi: 10.1021/bi9913707. [DOI] [PubMed] [Google Scholar]
- Ma J., Sigler P. B., Xu Z., Karplus M. A dynamic model for the allosteric mechanism of GroEL. J Mol Biol. 2000 Sep 15;302(2):303–313. doi: 10.1006/jmbi.2000.4014. [DOI] [PubMed] [Google Scholar]
- Parak F., Frolov E. N., Kononenko A. A., Mössbauer R. L., Goldanskii V. I., Rubin A. B. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett. 1980 Aug 11;117(1):368–372. doi: 10.1016/0014-5793(80)80982-3. [DOI] [PubMed] [Google Scholar]
- Pérez J., Zanotti J. M., Durand D. Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J. 1999 Jul;77(1):454–469. doi: 10.1016/S0006-3495(99)76903-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
- Receveur V., Calmettes P., Smith J. C., Desmadril M., Coddens G., Durand D. Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins. 1997 Jul;28(3):380–387. [PubMed] [Google Scholar]
- Réat V., Dunn R., Ferrand M., Finney J. L., Daniel R. M., Smith J. C. Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9961–9966. doi: 10.1073/pnas.97.18.9961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Réat V., Patzelt H., Ferrand M., Pfister C., Oesterhelt D., Zaccai G. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970–4975. doi: 10.1073/pnas.95.9.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sciortino F, Gallo P, Tartaglia P, Chen S. Supercooled water and the kinetic glass transition. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Dec;54(6):6331–6343. doi: 10.1103/physreve.54.6331. [DOI] [PubMed] [Google Scholar]
- Smith J., Kuczera K., Karplus M. Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1601–1605. doi: 10.1073/pnas.87.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sopkova J., Vincent M., Takahashi M., Lewit-Bentley A., Gallay J. Conformational flexibility of domain III of annexin V at membrane/water interfaces. Biochemistry. 1999 Apr 27;38(17):5447–5458. doi: 10.1021/bi982760g. [DOI] [PubMed] [Google Scholar]
- Stein D. L. A model of protein conformational substates. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3670–3672. doi: 10.1073/pnas.82.11.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbach P. J., Brooks B. R. Hydrated myoglobin's anharmonic fluctuations are not primarily due to dihedral transitions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):55–59. doi: 10.1073/pnas.93.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stella L., Nicotra M., Ricci G., Rosato N., Di Iorio E. E. Molecular dynamics simulations of human glutathione transferase P1-1: analysis of the induced-fit mechanism by GSH binding. Proteins. 1999 Oct 1;37(1):1–9. [PubMed] [Google Scholar]
- Vitkup D., Ringe D., Petsko G. A., Karplus M. Solvent mobility and the protein 'glass' transition. Nat Struct Biol. 2000 Jan;7(1):34–38. doi: 10.1038/71231. [DOI] [PubMed] [Google Scholar]
- Yamasaki K., Saito M., Oobatake M., Kanaya S. Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models. Biochemistry. 1995 May 23;34(20):6587–6601. doi: 10.1021/bi00020a003. [DOI] [PubMed] [Google Scholar]
- Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science. 2000 Jun 2;288(5471):1604–1607. doi: 10.1126/science.288.5471.1604. [DOI] [PubMed] [Google Scholar]
- Zaccai G. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Biophys Chem. 2000 Aug 30;86(2-3):249–257. doi: 10.1016/s0301-4622(00)00172-1. [DOI] [PubMed] [Google Scholar]
- Zanotti J. M., Bellissent-Funel M. C., Parello J. Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: the case of the typical EF-hand calcium-binding parvalbumin. Biophys J. 1999 May;76(5):2390–2411. doi: 10.1016/S0006-3495(99)77395-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y., Vitkup D., Karplus M. Native proteins are surface-molten solids: application of the Lindemann criterion for the solid versus liquid state. J Mol Biol. 1999 Jan 29;285(4):1371–1375. doi: 10.1006/jmbi.1998.2374. [DOI] [PubMed] [Google Scholar]