Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1710–1734. doi: 10.1016/S0006-3495(01)75824-9

Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins.

Y K Reshetnyak 1, E A Burstein 1
PMCID: PMC1301648  PMID: 11509383

Abstract

The physical causes for wide variation of Stokes shift values in emission spectra of tryptophan fluorophores in proteins have been proposed in the model of discrete states (Burstein, E. A., N. S. Vedenkina, and M. N. Ivkova. 1973. Photochem. Photobiol. 18:263-279; Burstein, E. A. 1977a. Intrinsic Protein Luminescence (The Nature and Application). In Advances in Science and Technology (Itogi Nauki i Tekhniki), Biophysics Vol. 7. VINITI, Moscow [In Russian]; Burstein, E. A. 1983. Molecular Biology (Moscow) 17:455-467 [In Russian; English translation]). It was assumed that the existence of the five most probable spectral classes of emitting tryptophan residues and differences among the classes were analyzed in terms of various combinations of specific and universal interactions of excited fluorophores with their environment. The development of stable algorithms of decomposition of tryptophan fluorescence spectra into log-normal components gave us an opportunity to apply two mathematically different algorithms, SImple fitting with Mean-Square criterion (SIMS) and PHase-plot-based REsolving with Quenchers (PHREQ) for the decomposition of a representative set of emission spectra of proteins. Here we present the results of decomposition of tryptophan emission spectra of >100 different proteins, some in various structural states (native and denatured, in complexes with ions or organic ligands, in various pH-induced conformations, etc.). Analysis of the histograms of occurrence of >300 spectral log-normal components with various maximum positions confirmed the statistical discreteness of several states of emitting tryptophan fluorophores in proteins.

Full Text

The Full Text of this article is available as a PDF (390.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandorowicz J., Pikuła S., Sobota A. Annexins IV (p32) and VI (p68) interact with erythrocyte membrane in a calcium-dependent manner. Biochim Biophys Acta. 1992 Apr 13;1105(2):201–206. doi: 10.1016/0005-2736(92)90195-r. [DOI] [PubMed] [Google Scholar]
  2. Benzonana G., Kohler L., Stein E. A. Regulatory proteins of crayfish tail muscle. Biochim Biophys Acta. 1974 Nov 19;368(2):247–258. doi: 10.1016/0005-2728(74)90153-4. [DOI] [PubMed] [Google Scholar]
  3. Bukolova-Orlova T. G., Burstein E. A., Chorbanov B. P., Aleksiev B. A., Atanasov B. P. Study of some physicochemical properties of the neurotoxic complex and its components from the venom of Bulgarian sand viper, Vipera ammodytes ammodytes. I. Luminescence of tryptophan residues. Biochim Biophys Acta. 1979 Mar 27;577(1):44–51. doi: 10.1016/0005-2795(79)90006-0. [DOI] [PubMed] [Google Scholar]
  4. Bukolova-Orlova T. G., Burstein E. A., Yukelson LYa Fluorescence of neurotoxins from middle-Asian cobra venom. Biochim Biophys Acta. 1974 Apr 11;342(2):275–280. doi: 10.1016/0005-2795(74)90082-8. [DOI] [PubMed] [Google Scholar]
  5. Bukolova-Orlova T. G., Orlov N. Y., Burstein E. A., Chorbanov B. P., Aleksiev B. Study of the neurotoxic complex and its components from the venom of the Bulgarian sand viper Vipera ammodytes ammodytes: Interaction of the acidic component with cations. Arch Biochem Biophys. 1980 Mar;200(1):216–222. doi: 10.1016/0003-9861(80)90348-3. [DOI] [PubMed] [Google Scholar]
  6. Bukolova-Orlova T. G., Permyakov E. A., Burstein E. A., Yukelson L. Y. Reinterpretation of luminiscence properties of neurotoxins from the venom of Middle-Asian corba Naja oxiana eichw. Biochim Biophys Acta. 1976 Aug 9;439(2):426–431. doi: 10.1016/0005-2795(76)90079-9. [DOI] [PubMed] [Google Scholar]
  7. Burstein E. A., Abornev S. M., Reshetnyak Y. K. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. Biophys J. 2001 Sep;81(3):1699–1709. doi: 10.1016/S0006-3495(01)75823-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burstein E. A., Permyakov E. A., Yashin V. A., Burkhanov S. A., Finazzi Agro A. The fine structure of luminescence spectra of azurin. Biochim Biophys Acta. 1977 Mar 28;491(1):155–159. doi: 10.1016/0005-2795(77)90051-4. [DOI] [PubMed] [Google Scholar]
  9. Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
  10. Bushueva T. L., Teplova M. V., Bushuev V. N., Kudriashov D. S., Vorotnikov A. V., Shirinskii V. P. Stabil'nost' struktury belka KRP (kinase related protein). Mol Biol (Mosk) 1999 Mar-Apr;33(2):227–236. [PubMed] [Google Scholar]
  11. Bushueva T. L., Tonevitskii A. G., Kindt A., Franz H. Struktura toksichnogo belka-lektina iz omely-pri razlichnykh pH: issledovanie metodom sobstvennoi fluorestsentsii. Mol Biol (Mosk) 1988 May-Jun;22(3):628–634. [PubMed] [Google Scholar]
  12. Bushueva T. L., Tonevitsky A. G. Similarity of protein conformation at low pH and high temperature observed for B-chains of two plant toxins: ricin and mistletoe lectin 1. FEBS Lett. 1988 Feb 29;229(1):119–122. doi: 10.1016/0014-5793(88)80809-3. [DOI] [PubMed] [Google Scholar]
  13. Bushueva T. L., Tonevitsky A. G. The effect of pH on the conformation and stability of the structure of plant toxin-ricin. FEBS Lett. 1987 May 4;215(1):155–159. doi: 10.1016/0014-5793(87)80132-1. [DOI] [PubMed] [Google Scholar]
  14. Callis P. R. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol. 1997;278:113–150. doi: 10.1016/s0076-6879(97)78009-1. [DOI] [PubMed] [Google Scholar]
  15. Chen Y., Barkley M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998 Jul 14;37(28):9976–9982. doi: 10.1021/bi980274n. [DOI] [PubMed] [Google Scholar]
  16. Cox J. A., Wnuk W., Stein E. A. Isolation and properties of a sarcoplasmic calcium-binding protein from crayfish. Biochemistry. 1976 Jun 15;15(12):2613–2618. doi: 10.1021/bi00657a021. [DOI] [PubMed] [Google Scholar]
  17. Czuryło E. A., Emelyanenko V. I., Permyakov E. A., Dabrowska R. Spectrofluorimetric studies on C-terminal 34 kDa fragment of caldesmon. Biophys Chem. 1991 May;40(2):181–188. doi: 10.1016/0301-4622(91)87007-r. [DOI] [PubMed] [Google Scholar]
  18. Haiech J., Derancourt J., Pechere J. F., Demaille J. G. A new large-scale purification procedure for muscular parvalbumins. Biochimie. 1979;61(5-6):583–587. doi: 10.1016/s0300-9084(79)80155-8. [DOI] [PubMed] [Google Scholar]
  19. Koteliansky V. E., Glukhova M. A., Shirinsky V. P., Smirnov V. N., Bushueva T. L., Filimonov V. V., Venyaminov S. Y. A structural study of filamin, a high-molecular-weight actin-binding protein from chicken gizzard. Eur J Biochem. 1982 Jan;121(3):553–559. doi: 10.1111/j.1432-1033.1982.tb05822.x. [DOI] [PubMed] [Google Scholar]
  20. Meagher J. L., Beechem J. M., Olson S. T., Gettins P. G. Deconvolution of the fluorescence emission spectrum of human antithrombin and identification of the tryptophan residues that are responsive to heparin binding. J Biol Chem. 1998 Sep 4;273(36):23283–23289. doi: 10.1074/jbc.273.36.23283. [DOI] [PubMed] [Google Scholar]
  21. Mély Y., Cadène M., Sylte I., Bieth J. G. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling. Biochemistry. 1997 Dec 16;36(50):15624–15631. doi: 10.1021/bi971029r. [DOI] [PubMed] [Google Scholar]
  22. Orlov NYa, Orlova T. G., Reshetnyak Y. K., Burstein E. A., Kimura N. Interaction of recombinant rat nucleoside diphosphate kinase alpha with bleached bovine retinal rod outer segment membranes: a possible mode of pH and salt effects. Biochem Mol Biol Int. 1997 Jan;41(1):189–198. doi: 10.1080/15216549700201191. [DOI] [PubMed] [Google Scholar]
  23. Orlov N. Y., Orlova T. G., Reshetnyak Y. K., Burstein E. A., Kimura N. Comparative study of recombinant rat nucleoside diphosphate kinases alpha and beta by intrinsic protein fluorescence. J Biomol Struct Dyn. 1999 Feb;16(4):955–968. doi: 10.1080/07391102.1999.10508304. [DOI] [PubMed] [Google Scholar]
  24. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  25. Permyakov E. A., Grishchenko V. M., Kalinichenko L. P., Orlov N. Y., Kuwajima K., Sugai S. Calcium-regulated interactions of human alpha-lactalbumin with bee venom melittin. Biophys Chem. 1991 Feb;39(2):111–117. doi: 10.1016/0301-4622(91)85012-f. [DOI] [PubMed] [Google Scholar]
  26. Permyakov E. A., Morozova L. A., Burstein E. A. Cation binding effects on the pH, thermal and urea denaturation transitions in alpha-lactalbumin. Biophys Chem. 1985 Jan;21(1):21–31. doi: 10.1016/0301-4622(85)85003-1. [DOI] [PubMed] [Google Scholar]
  27. Permyakov E. A., Shnyrov V. L. A spectrofluorometric study of the environment of tryptophans in bacteriorhodopsin. Biophys Chem. 1983 Sep;18(2):145–152. doi: 10.1016/0301-4622(83)85009-1. [DOI] [PubMed] [Google Scholar]
  28. Permyakov E. A., Veprintsev D. B., Deikus G. Y., Permyakov S. E., Kalinichenko L. P., Grishchenko V. M., Brooks C. L. pH-induced transition and Zn2+-binding properties of bovine prolactin. FEBS Lett. 1997 Apr 1;405(3):273–276. doi: 10.1016/s0014-5793(97)00203-2. [DOI] [PubMed] [Google Scholar]
  29. Permyakov E. A., Yarmolenko V. V., Emelyanenko V. I., Burstein E. A., Closset J., Gerday C. Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin. Eur J Biochem. 1980 Aug;109(1):307–315. doi: 10.1111/j.1432-1033.1980.tb04796.x. [DOI] [PubMed] [Google Scholar]
  30. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  31. Reshetnyak Y. K., Andreev O. A., Borejdo J., Toptygin D. D., Brand L., Burstein E. A. The identification of tryptophan residues responsible for ATP-induced increase in intrinsic fluorescence of myosin subfragment 1. J Biomol Struct Dyn. 2000 Aug;18(1):113–125. doi: 10.1080/07391102.2000.10506651. [DOI] [PubMed] [Google Scholar]
  32. Sobota A., Bandorowicz J., Jezierski A., Sikorski A. F. The effect of annexin IV and VI on the fluidity of phosphatidylserine/phosphatidylcholine bilayers studied with the use of 5-deoxylstearate spin label. FEBS Lett. 1993 Jan 4;315(2):178–182. doi: 10.1016/0014-5793(93)81158-v. [DOI] [PubMed] [Google Scholar]
  33. Tchorbanov B., Aleksiev B., Bukolova-Orlova T., Burstein E., Atanasov B. Subfractionation and recombination of a neurotoxic complex from the venom of the Bulgarian viper (Vipera ammodytes ammodytes). FEBS Lett. 1977 Apr 15;76(2):266–268. doi: 10.1016/0014-5793(77)80165-8. [DOI] [PubMed] [Google Scholar]
  34. Vedenkina N. S., Ivkova M. N., Leonova V. N., Burshtein E. A. Fluorestsentsiia aktina i aktomiozina v raznykh strukturnykh sostoianiiakh. Biofizika. 1968 Sep-Oct;13(5):847–852. [PubMed] [Google Scholar]
  35. Weller P. A., Ogryzko E. P., Corben E. B., Zhidkova N. I., Patel B., Price G. J., Spurr N. K., Koteliansky V. E., Critchley D. R. Complete sequence of human vinculin and assignment of the gene to chromosome 10. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5667–5671. doi: 10.1073/pnas.87.15.5667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhou X., Maéda Y., Mabuchi K., Lehrer S. S. Unfolding domains and tryptophan accessibility of a 59 kDa coiled-coil light meromyosin. J Mol Biol. 1998 Mar 6;276(4):829–838. doi: 10.1006/jmbi.1997.1571. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES