Abstract
In our previous paper (Reshetnyak, Ya. K., and E. A. Burstein. 2001. Biophys. J. 81:1710-1734) we confirmed the existence of five statistically discrete classes of emitting tryptophan fluorophores in proteins. The differences in fluorescence properties of tryptophan residues of these five classes reflect differences in interactions of excited states of tryptophan fluorophores with their microenvironment in proteins. Here we present a system of describing physical and structural parameters of microenvironments of tryptophan residues based on analysis of atomic crystal structures of proteins. The application of multidimensional statistical methods of cluster and discriminant analyses for the set of microenvironment parameters of 137 tryptophan residues of 48 proteins with known three-dimensional structures allowed us to 1) demonstrate the discrete nature of ensembles of structural parameters of tryptophan residues in proteins; 2) assign spectral components obtained after decomposition of tryptophan fluorescence spectra to individual tryptophan residues; 3) find a correlation between spectroscopic and physico-structural features of the microenvironment; and 4) reveal differences in structural and physical parameters of the microenvironment of tryptophan residues belonging to various spectral classes.
Full Text
The Full Text of this article is available as a PDF (216.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrade M. A., O'Donoghue S. I., Rost B. Adaptation of protein surfaces to subcellular location. J Mol Biol. 1998 Feb 20;276(2):517–525. doi: 10.1006/jmbi.1997.1498. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bhaskaran R., Prabhakaran M., Jayaraman G., Yu C., Ponnuswamy P. K. Internal packing conditions and fluctuations of amino acid residues in globular proteins. J Biomol Struct Dyn. 1996 Feb;13(4):627–639. doi: 10.1080/07391102.1996.10508875. [DOI] [PubMed] [Google Scholar]
- Brown M. F., Omar S., Raubach R. A., Schleich T. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide. Biochemistry. 1977 Mar 8;16(5):987–992. doi: 10.1021/bi00624a028. [DOI] [PubMed] [Google Scholar]
- Burgess S. A. Rigor and relaxed outer dynein arms in replicas of cryofixed motile flagella. J Mol Biol. 1995 Jun 30;250(1):52–63. doi: 10.1006/jmbi.1995.0357. [DOI] [PubMed] [Google Scholar]
- Burstein E. A., Abornev S. M., Reshetnyak Y. K. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. Biophys J. 2001 Sep;81(3):1699–1709. doi: 10.1016/S0006-3495(01)75823-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burstein E. A., Permyakov E. A., Yashin V. A., Burkhanov S. A., Finazzi Agro A. The fine structure of luminescence spectra of azurin. Biochim Biophys Acta. 1977 Mar 28;491(1):155–159. doi: 10.1016/0005-2795(77)90051-4. [DOI] [PubMed] [Google Scholar]
- Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
- Callis P. R. 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol. 1997;278:113–150. doi: 10.1016/s0076-6879(97)78009-1. [DOI] [PubMed] [Google Scholar]
- Carugo O., Argos P. Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors. Proteins. 1998 May 1;31(2):201–213. [PubMed] [Google Scholar]
- Carugo O., Argos P. Correlation between side chain mobility and conformation in protein structures. Protein Eng. 1997 Jul;10(7):777–787. doi: 10.1093/protein/10.7.777. [DOI] [PubMed] [Google Scholar]
- Carugo O., Bordo D. How many water molecules can be detected by protein crystallography? Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):479–483. doi: 10.1107/s0907444998012086. [DOI] [PubMed] [Google Scholar]
- Chen Y., Barkley M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998 Jul 14;37(28):9976–9982. doi: 10.1021/bi980274n. [DOI] [PubMed] [Google Scholar]
- Chou K. C., Elrod D. W. Using discriminant function for prediction of subcellular location of prokaryotic proteins. Biochem Biophys Res Commun. 1998 Nov 9;252(1):63–68. doi: 10.1006/bbrc.1998.9498. [DOI] [PubMed] [Google Scholar]
- Cowgill R. W. Fluorescence and the structure of proteins. 18. Spatial requirements for quenching by disulfide groups. Biochim Biophys Acta. 1970 Jun 23;207(3):556–559. doi: 10.1016/s0005-2795(70)80019-8. [DOI] [PubMed] [Google Scholar]
- Craig L., Sanschagrin P. C., Rozek A., Lackie S., Kuhn L. A., Scott J. K. The role of structure in antibody cross-reactivity between peptides and folded proteins. J Mol Biol. 1998 Aug 7;281(1):183–201. doi: 10.1006/jmbi.1998.1907. [DOI] [PubMed] [Google Scholar]
- DUGGAN D. E., UDENFRIEND S. The spectrophotofluorometric determination of tryptophan in plasma and of tryptophan and tyrosine in protein hydrolysates. J Biol Chem. 1956 Nov;223(1):313–319. [PubMed] [Google Scholar]
- Desie G., Boens N., De Schryver F. C. Study of the time-resolved tryptophan fluorescence of crystalline alpha-chymotrypsin. Biochemistry. 1986 Dec 16;25(25):8301–8308. doi: 10.1021/bi00373a026. [DOI] [PubMed] [Google Scholar]
- Dolashka P., Dimov I., Genov N., Svendsen I., Wilson K. S., Betzel C. Fluorescence properties of native and photooxidised proteinase K: the X-ray model in the region of the two tryptophans. Biochim Biophys Acta. 1992 Feb 1;1118(3):303–312. doi: 10.1016/0167-4838(92)90289-p. [DOI] [PubMed] [Google Scholar]
- Edsall J. T., McKenzie H. A. Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties. Adv Biophys. 1983;16:53–183. doi: 10.1016/0065-227x(83)90008-4. [DOI] [PubMed] [Google Scholar]
- Evans P. A., Dobson C. M., Kautz R. A., Hatfull G., Fox R. O. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature. 1987 Sep 17;329(6136):266–268. doi: 10.1038/329266a0. [DOI] [PubMed] [Google Scholar]
- Fox R. O., Evans P. A., Dobson C. M. Multiple conformations of a protein demonstrated by magnetization transfer NMR spectroscopy. Nature. 1986 Mar 13;320(6058):192–194. doi: 10.1038/320192a0. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
- Fucaloro A. F., Forster L. S. Conformational fluctuations in alpha-chymotrypsinogen A powders. Photochem Photobiol. 1985 Jan;41(1):91–93. doi: 10.1111/j.1751-1097.1985.tb03453.x. [DOI] [PubMed] [Google Scholar]
- Gilardi G., Mei G., Rosato N., Canters G. W., Finazzi-Agrò A. Unique environment of Trp48 in Pseudomonas aeruginosa azurin as probed by site-directed mutagenesis and dynamic fluorescence spectroscopy. Biochemistry. 1994 Feb 15;33(6):1425–1432. doi: 10.1021/bi00172a020. [DOI] [PubMed] [Google Scholar]
- Gray P. M., Kemp G. J., Rawlings C. J., Brown N. P., Sander C., Thornton J. M., Orengo C. M., Wodak S. J., Richelle J. Macromolecular structure information and databases. The EU BRIDGE Database Project Consortium. Trends Biochem Sci. 1996 Jul;21(7):251–256. [PubMed] [Google Scholar]
- Hammann C., Messerschmidt A., Huber R., Nar H., Gilardi G., Canters G. W. X-ray crystal structure of the two site-specific mutants Ile7Ser and Phe110Ser of azurin from Pseudomonas aeruginosa. J Mol Biol. 1996 Jan 26;255(3):362–366. doi: 10.1006/jmbi.1996.0029. [DOI] [PubMed] [Google Scholar]
- Hogue C. W., Ohkawa H., Bryant S. H. A dynamic look at structures: WWW-Entrez and the Molecular Modeling Database. Trends Biochem Sci. 1996 Jun;21(6):226–229. [PubMed] [Google Scholar]
- Ikura T., Tsurupa G. P., Kuwajima K. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations. Biochemistry. 1997 May 27;36(21):6529–6538. doi: 10.1021/bi963174v. [DOI] [PubMed] [Google Scholar]
- Ivanov A. S., Rumjantsev A. B., Skvortşov V. S., Archakov A. I. ONIX: an interactive PC program for the examination of protein 3D structure from PDB. Comput Appl Biosci. 1997 Feb;13(1):111–113. doi: 10.1093/bioinformatics/13.1.111. [DOI] [PubMed] [Google Scholar]
- Kuznetsova I. M., Yakusheva T. A., Turoverov K. K. Contribution of separate tryptophan residues to intrinsic fluorescence of actin. Analysis of 3D structure. FEBS Lett. 1999 Jun 11;452(3):205–210. doi: 10.1016/s0014-5793(99)00574-8. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A., Hutchinson E. G., Michie A. D., Wallace A. C., Jones M. L., Thornton J. M. PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci. 1997 Dec;22(12):488–490. doi: 10.1016/s0968-0004(97)01140-7. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Levitt M., Park B. H. Water: now you see it, now you don't. Structure. 1993 Dec 15;1(4):223–226. doi: 10.1016/0969-2126(93)90011-5. [DOI] [PubMed] [Google Scholar]
- Maki K., Ikura T., Hayano T., Takahashi N., Kuwajima K. Effects of proline mutations on the folding of staphylococcal nuclease. Biochemistry. 1999 Feb 16;38(7):2213–2223. doi: 10.1021/bi981962+. [DOI] [PubMed] [Google Scholar]
- McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
- Mély Y., Cadène M., Sylte I., Bieth J. G. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling. Biochemistry. 1997 Dec 16;36(50):15624–15631. doi: 10.1021/bi971029r. [DOI] [PubMed] [Google Scholar]
- Orlov N. Y., Orlova T. G., Reshetnyak Y. K., Burstein E. A., Kimura N. Comparative study of recombinant rat nucleoside diphosphate kinases alpha and beta by intrinsic protein fluorescence. J Biomol Struct Dyn. 1999 Feb;16(4):955–968. doi: 10.1080/07391102.1999.10508304. [DOI] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Wüthrich K. Protein hydration in aqueous solution. Science. 1991 Nov 15;254(5034):974–980. doi: 10.1126/science.1948083. [DOI] [PubMed] [Google Scholar]
- Pelley R., Horowitz P. Fluorimetric studies of tryptophyl exposure in concanavalin A. Biochim Biophys Acta. 1976 Mar 18;427(1):359–363. doi: 10.1016/0005-2795(76)90311-1. [DOI] [PubMed] [Google Scholar]
- Permyakov E. A., Shnyrov V. L. A spectrofluorometric study of the environment of tryptophans in bacteriorhodopsin. Biophys Chem. 1983 Sep;18(2):145–152. doi: 10.1016/0301-4622(83)85009-1. [DOI] [PubMed] [Google Scholar]
- Pierce D. W., Boxer S. G. Stark effect spectroscopy of tryptophan. Biophys J. 1995 Apr;68(4):1583–1591. doi: 10.1016/S0006-3495(95)80331-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reshetnyak Y. K., Burstein E. A. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. Biophys J. 2001 Sep;81(3):1710–1734. doi: 10.1016/S0006-3495(01)75824-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousslang K. W., Thomasson J. M., Rose J. B., Kwiram A. L. Triplet state of tryptophan in proteins. 2. Differentiation between tryptophan residues 62 and 108 in lysozyme. Biochemistry. 1979 May 29;18(11):2296–2300. doi: 10.1021/bi00578a025. [DOI] [PubMed] [Google Scholar]
- SHORE V. G., PARDEE A. B. Fluorescence of some proteins, nucleic acids and related compounds. Arch Biochem Biophys. 1956 Jan;60(1):100–107. doi: 10.1016/0003-9861(56)90401-5. [DOI] [PubMed] [Google Scholar]
- Sanschagrin P. C., Kuhn L. A. Cluster analysis of consensus water sites in thrombin and trypsin shows conservation between serine proteases and contributions to ligand specificity. Protein Sci. 1998 Oct;7(10):2054–2064. doi: 10.1002/pro.5560071002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steele R. H., Szent-Györgyi A. STUDIES ON THE EXCITED STATES OF PROTEINS. Proc Natl Acad Sci U S A. 1958 Jun;44(6):540–545. doi: 10.1073/pnas.44.6.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TEALE F. W. The ultraviolet fluorescence of proteins in neutral solution. Biochem J. 1960 Aug;76:381–388. doi: 10.1042/bj0760381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turoverov K. K., Kuznetsova I. M., Zaitsev V. N. The environment of the tryptophan residue in Pseudomonas aeruginosa azurin and its fluorescence properties. Biophys Chem. 1985 Nov;23(1-2):79–89. doi: 10.1016/0301-4622(85)80066-1. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J. M. The protein state of matter. Biochim Biophys Acta. 1998 Aug 18;1386(2):241–253. doi: 10.1016/s0167-4838(98)00097-1. [DOI] [PubMed] [Google Scholar]
- Veeraraghavan S., Nall B. T., Fink A. L. Effect of prolyl isomerase on the folding reactions of staphylococcal nuclease. Biochemistry. 1997 Dec 9;36(49):15134–15139. doi: 10.1021/bi971357r. [DOI] [PubMed] [Google Scholar]
- Yuan T., Weljie A. M., Vogel H. J. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry. 1998 Mar 3;37(9):3187–3195. doi: 10.1021/bi9716579. [DOI] [PubMed] [Google Scholar]
- Zhang M. Q. Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):565–568. doi: 10.1073/pnas.94.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
