Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):1990–2000. doi: 10.1016/S0006-3495(01)75849-3

A new dimension in retrograde flow: centripetal movement of engulfed particles.

A Caspi 1, O Yeger 1, I Grosheva 1, A D Bershadsky 1, M Elbaum 1
PMCID: PMC1301673  PMID: 11566772

Abstract

Centripetal motion of surface-adherent particles is a classic experimental system for studying surface dynamics on a eukaryotic cell. To investigate bead migration over the entire cell surface, we have developed an experimental assay using multinuclear giant fibroblasts, which provide expanded length scales and an unambiguous frame of reference. Beads coated by adhesion ligands concanavalin A or fibronectin are placed in specific locations on the cell using optical tweezers, and their subsequent motion is tracked over time. The adhesion, as well as velocity and directionality of their movement, expose distinct regions of the cytoplasm and membrane. Beads placed on the peripheral lamella initiate centripetal motion, whereas beads placed on the central part of the cell attach to a stationary cortex and do not move. Careful examination by complementary three-dimensional methods shows that the motion of a bead placed on the cell periphery takes place after engulfment into the cytoplasm, whereas stationary beads, placed near the cell center, are not engulfed. These results demonstrate that centripetal motion of adhering particles may occur inside as well as outside the cell. Inhibition of actomyosin activity is used to explore requirements for engulfment and aspects of the bead movement. Centripetal movement of adherent particles seems to depend on mechanisms distinct from those driving overall cell contractility.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp Cell Res. 1970 Oct;62(2):389–398. doi: 10.1016/0014-4827(70)90570-7. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. I., Wang Y. L., Small J. V. Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J Cell Biol. 1996 Sep;134(5):1209–1218. doi: 10.1083/jcb.134.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balaban N. Q., Schwarz U. S., Riveline D., Goichberg P., Tzur G., Sabanay I., Mahalu D., Safran S., Bershadsky A., Addadi L. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001 May;3(5):466–472. doi: 10.1038/35074532. [DOI] [PubMed] [Google Scholar]
  4. Benink H. A., Mandato C. A., Bement W. M. Analysis of cortical flow models in vivo. Mol Biol Cell. 2000 Aug;11(8):2553–2563. doi: 10.1091/mbc.11.8.2553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bershadsky A., Chausovsky A., Becker E., Lyubimova A., Geiger B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol. 1996 Oct 1;6(10):1279–1289. doi: 10.1016/s0960-9822(02)70714-8. [DOI] [PubMed] [Google Scholar]
  6. Bretscher M. S. Endocytosis: relation to capping and cell locomotion. Science. 1984 May 18;224(4650):681–686. doi: 10.1126/science.6719108. [DOI] [PubMed] [Google Scholar]
  7. Caspi A., Granek R., Elbaum M. Enhanced diffusion in active intracellular transport. Phys Rev Lett. 2000 Dec 25;85(26 Pt 1):5655–5658. doi: 10.1103/PhysRevLett.85.5655. [DOI] [PubMed] [Google Scholar]
  8. Choquet D., Felsenfeld D. P., Sheetz M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997 Jan 10;88(1):39–48. doi: 10.1016/s0092-8674(00)81856-5. [DOI] [PubMed] [Google Scholar]
  9. Cramer L. P., Siebert M., Mitchison T. J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J Cell Biol. 1997 Mar 24;136(6):1287–1305. doi: 10.1083/jcb.136.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dabiri G. A., Sanger J. M., Portnoy D. A., Southwick F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6068–6072. doi: 10.1073/pnas.87.16.6068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dai J., Sheetz M. P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J. 1995 Mar;68(3):988–996. doi: 10.1016/S0006-3495(95)80274-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Domnina L. V., Ivanova O. Y., Margolis L. B., Olshevskaja L. V., Rovensky Y. A., Vasiliev J. M., Gelfand I. M. Defective formation of the lamellar cytoplasm by neoplastic fibroblasts (L cells-transformed cells-cell attachment-contact inhibition-scanning electron microscopy-microcinematography). Proc Natl Acad Sci U S A. 1972 Jan;69(1):248–252. doi: 10.1073/pnas.69.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Euteneuer U., Schliwa M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature. 1984 Jul 5;310(5972):58–61. doi: 10.1038/310058a0. [DOI] [PubMed] [Google Scholar]
  14. Felsenfeld D. P., Schwartzberg P. L., Venegas A., Tse R., Sheetz M. P. Selective regulation of integrin--cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol. 1999 Aug;1(4):200–206. doi: 10.1038/12021. [DOI] [PubMed] [Google Scholar]
  15. Gaidarov I., Santini F., Warren R. A., Keen J. H. Spatial control of coated-pit dynamics in living cells. Nat Cell Biol. 1999 May;1(1):1–7. doi: 10.1038/8971. [DOI] [PubMed] [Google Scholar]
  16. Galbraith C. G., Sheetz M. P. Keratocytes pull with similar forces on their dorsal and ventral surfaces. J Cell Biol. 1999 Dec 13;147(6):1313–1324. doi: 10.1083/jcb.147.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  18. Harris A., Dunn G. Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp Cell Res. 1972 Aug;73(2):519–523. doi: 10.1016/0014-4827(72)90084-5. [DOI] [PubMed] [Google Scholar]
  19. Helfman D. M., Levy E. T., Berthier C., Shtutman M., Riveline D., Grosheva I., Lachish-Zalait A., Elbaum M., Bershadsky A. D. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol Biol Cell. 1999 Oct;10(10):3097–3112. doi: 10.1091/mbc.10.10.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henson J. H., Svitkina T. M., Burns A. R., Hughes H. E., MacPartland K. J., Nazarian R., Borisy G. G. Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol Biol Cell. 1999 Dec;10(12):4075–4090. doi: 10.1091/mbc.10.12.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ingram V. M. A side view of moving fibroblasts. Nature. 1969 May 17;222(5194):641–644. doi: 10.1038/222641a0. [DOI] [PubMed] [Google Scholar]
  22. Jay P. Y., Elson E. L. Surface particle transport mechanism independent of myosin II in Dictyostelium. Nature. 1992 Apr 2;356(6368):438–440. doi: 10.1038/356438a0. [DOI] [PubMed] [Google Scholar]
  23. Kolodney M. S., Elson E. L. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10252–10256. doi: 10.1073/pnas.92.22.10252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krendel M., Sgourdas G., Bonder E. M. Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules. Cell Motil Cytoskeleton. 1998;40(4):368–378. doi: 10.1002/(SICI)1097-0169(1998)40:4<368::AID-CM5>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  25. Kusumi A., Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. doi: 10.1016/s0955-0674(96)80036-6. [DOI] [PubMed] [Google Scholar]
  26. Lee G. M., Ishihara A., Jacobson K. A. Direct observation of brownian motion of lipids in a membrane. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6274–6278. doi: 10.1073/pnas.88.14.6274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee J., Gustafsson M., Magnusson K. E., Jacobson K. The direction of membrane lipid flow in locomoting polymorphonuclear leukocytes. Science. 1990 Mar 9;247(4947):1229–1233. doi: 10.1126/science.2315695. [DOI] [PubMed] [Google Scholar]
  28. Levenberg S., Katz B. Z., Yamada K. M., Geiger B. Long-range and selective autoregulation of cell-cell or cell-matrix adhesions by cadherin or integrin ligands. J Cell Sci. 1998 Feb;111(Pt 3):347–357. doi: 10.1242/jcs.111.3.347. [DOI] [PubMed] [Google Scholar]
  29. Lin C. H., Espreafico E. M., Mooseker M. S., Forscher P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron. 1996 Apr;16(4):769–782. doi: 10.1016/s0896-6273(00)80097-5. [DOI] [PubMed] [Google Scholar]
  30. Lin C. H., Forscher P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron. 1995 Apr;14(4):763–771. doi: 10.1016/0896-6273(95)90220-1. [DOI] [PubMed] [Google Scholar]
  31. Lyass L. A., Bershadsky A. D., Gelfand V. I., Serpinskaya A. S., Stavrovskaya A. A., Vasiliev J. M., Gelfand I. M. Multinucleation-induced improvement of the spreading of transformed cells on the substratum. Proc Natl Acad Sci U S A. 1984 May;81(10):3098–3102. doi: 10.1073/pnas.81.10.3098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Munevar S., Wang Y., Dembo M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J. 2001 Apr;80(4):1744–1757. doi: 10.1016/s0006-3495(01)76145-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nishizaka T., Shi Q., Sheetz M. P. Position-dependent linkages of fibronectin- integrin-cytoskeleton. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):692–697. doi: 10.1073/pnas.97.2.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Riveline D., Zamir E., Balaban N. Q., Schwarz U. S., Ishizaki T., Narumiya S., Kam Z., Geiger B., Bershadsky A. D. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 2001 Jun 11;153(6):1175–1186. doi: 10.1083/jcb.153.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schmidt C. E., Horwitz A. F., Lauffenburger D. A., Sheetz M. P. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993 Nov;123(4):977–991. doi: 10.1083/jcb.123.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sheetz M. P., Turney S., Qian H., Elson E. L. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989 Jul 27;340(6231):284–288. doi: 10.1038/340284a0. [DOI] [PubMed] [Google Scholar]
  37. Svitkina T. M., Shevelev A. A., Bershadsky A. D., Gelfand V. I. Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas. Eur J Cell Biol. 1984 May;34(1):64–74. [PubMed] [Google Scholar]
  38. Swanson J. A., Johnson M. T., Beningo K., Post P., Mooseker M., Araki N. A contractile activity that closes phagosomes in macrophages. J Cell Sci. 1999 Feb;112(Pt 3):307–316. doi: 10.1242/jcs.112.3.307. [DOI] [PubMed] [Google Scholar]
  39. Theriot J. A., Mitchison T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J Cell Biol. 1992 Oct;119(2):367–377. doi: 10.1083/jcb.119.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thompson C., Lin C. H., Forscher P. An Aplysia cell adhesion molecule associated with site-directed actin filament assembly in neuronal growth cones. J Cell Sci. 1996 Dec;109(Pt 12):2843–2854. doi: 10.1242/jcs.109.12.2843. [DOI] [PubMed] [Google Scholar]
  41. Tian B., Millar C., Kaufman P. L., Bershadsky A., Becker E., Geiger B. Effects of H-7 on the iris and ciliary muscle in monkeys. Arch Ophthalmol. 1998 Aug;116(8):1070–1077. doi: 10.1001/archopht.116.8.1070. [DOI] [PubMed] [Google Scholar]
  42. Tilney L. G., Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1):1597–1608. doi: 10.1083/jcb.109.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Todaro G. J., Green H., Swift M. R. Susceptibility of human diploid fibroblast strains to transformation by SV40 virus. Science. 1966 Sep 9;153(3741):1252–1254. doi: 10.1126/science.153.3741.1252. [DOI] [PubMed] [Google Scholar]
  44. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., Morishita T., Tamakawa H., Yamagami K., Inui J., Maekawa M. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997 Oct 30;389(6654):990–994. doi: 10.1038/40187. [DOI] [PubMed] [Google Scholar]
  45. Waterman-Storer C. M., Desai A., Bulinski J. C., Salmon E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol. 1998 Nov 5;8(22):1227–1230. doi: 10.1016/s0960-9822(07)00515-5. [DOI] [PubMed] [Google Scholar]
  46. Zamir E., Katz M., Posen Y., Erez N., Yamada K. M., Katz B. Z., Lin S., Lin D. C., Bershadsky A., Kam Z. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol. 2000 Apr;2(4):191–196. doi: 10.1038/35008607. [DOI] [PubMed] [Google Scholar]
  47. de Brabander M., Nuydens R., Ishihara A., Holifield B., Jacobson K., Geerts H. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. J Cell Biol. 1991 Jan;112(1):111–124. doi: 10.1083/jcb.112.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de Win A. H., Pierson E. S., Derksen J. Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J. 1999 Mar;76(3):1648–1658. doi: 10.1016/S0006-3495(99)77324-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES