Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2403–2413. doi: 10.1016/S0006-3495(01)75887-0

The mechanism of oxidation-induced low-density lipoprotein aggregation: an analogy to colloidal aggregation and beyond?

S Xu 1, B Lin 1
PMCID: PMC1301711  PMID: 11566810

Abstract

Atherosclerosis is a disease initiated by lipoprotein aggregation and deposition in artery walls. In this study, the de novo low-density lipoprotein aggregation process was examined. Nine major intermediates were identified in two stages of the aggregation process. In the aggregation stage, low-density lipoprotein molecules aggregate and form nucleation units. The nucleation units chain together and form linear aggregates. The linear aggregates branch and interact with one another, forming fractals. In the fusion stage, spatially adjacent nucleation units in the fractal fuse into curved membrane surfaces, which, in turn, fuse into multilamellar or unilamellar vesicles. Alternatively, some adjacent nucleation units in the fractals assemble in a straight line and form rods. Subsequently, the rods flatten out into rough and then into smooth ribbons. Occasionally, tubular membrane vesicles are formed from the fractals. The aggregation stage seems to be analogous to colloidal aggregation and amyloid fiber formation. The fusion stage seems to be characteristic of the lipid-rich lipoproteins and is beyond colloidal aggregation and amyloid fiber formation.

Full Text

The Full Text of this article is available as a PDF (477.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
  2. Berliner J. A., Heinecke J. W. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996;20(5):707–727. doi: 10.1016/0891-5849(95)02173-6. [DOI] [PubMed] [Google Scholar]
  3. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  4. Bolgar M. S., Yang C. Y., Gaskell S. J. First direct evidence for lipid/protein conjugation in oxidized human low density lipoprotein. J Biol Chem. 1996 Nov 8;271(45):27999–28001. doi: 10.1074/jbc.271.45.27999. [DOI] [PubMed] [Google Scholar]
  5. Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
  6. Chao F. F., Blanchette-Mackie E. J., Chen Y. J., Dickens B. F., Berlin E., Amende L. M., Skarlatos S. I., Gamble W., Resau J. H., Mergner W. T. Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions. Am J Pathol. 1990 Jan;136(1):169–179. [PMC free article] [PubMed] [Google Scholar]
  7. Chao F. F., Blanchette-Mackie E. J., Tertov V. V., Skarlatos S. I., Chen Y. J., Kruth H. S. Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome. J Biol Chem. 1992 Mar 5;267(7):4992–4998. [PubMed] [Google Scholar]
  8. Fowler S., Berberian P. A., Shio H., Goldfischer S., Wolinsky H. Characterization of cell populations isolated from aortas of rhesus monkeys with experimental atherosclerosis. Circ Res. 1980 Apr;46(4):520–530. doi: 10.1161/01.res.46.4.520. [DOI] [PubMed] [Google Scholar]
  9. Getz G. S. An overview of atherosclerosis: a look to the future. Toxicol Pathol. 1990;18(4 Pt 1):623–635. [PubMed] [Google Scholar]
  10. Guyton J. R., Klemp K. F. The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol. 1989 Mar;134(3):705–717. [PMC free article] [PubMed] [Google Scholar]
  11. Hakala J. K., Oörni K., Ala-Korpela M., Kovanen P. T. Lipolytic modification of LDL by phospholipase A2 induces particle aggregation in the absence and fusion in the presence of heparin. Arterioscler Thromb Vasc Biol. 1999 May;19(5):1276–1283. doi: 10.1161/01.atv.19.5.1276. [DOI] [PubMed] [Google Scholar]
  12. Hansma P. K., Elings V. B., Marti O., Bracker C. E. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science. 1988 Oct 14;242(4876):209–216. doi: 10.1126/science.3051380. [DOI] [PubMed] [Google Scholar]
  13. Hoff H. F., Whitaker T. E., O'Neil J. Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. J Biol Chem. 1992 Jan 5;267(1):602–609. [PubMed] [Google Scholar]
  14. Honig B. H., Hubbell W. L., Flewelling R. F. Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
  15. Khoo J. C., Miller E., McLoughlin P., Steinberg D. Prevention of low density lipoprotein aggregation by high density lipoprotein or apolipoprotein A-I. J Lipid Res. 1990 Apr;31(4):645–652. [PubMed] [Google Scholar]
  16. Maor I., Aviram M. Macrophage released proteoglycans are involved in cell-mediated aggregation of LDL. Atherosclerosis. 1999 Jan;142(1):57–66. doi: 10.1016/s0021-9150(98)00191-9. [DOI] [PubMed] [Google Scholar]
  17. Marathe S., Kuriakose G., Williams K. J., Tabas I. Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler Thromb Vasc Biol. 1999 Nov;19(11):2648–2658. doi: 10.1161/01.atv.19.11.2648. [DOI] [PubMed] [Google Scholar]
  18. Navab M., Berliner J. A., Watson A. D., Hama S. Y., Territo M. C., Lusis A. J., Shih D. M., Van Lenten B. J., Frank J. S., Demer L. L. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol. 1996 Jul;16(7):831–842. doi: 10.1161/01.atv.16.7.831. [DOI] [PubMed] [Google Scholar]
  19. Rice-Evans C., Bruckdorfer K. R. Free radicals, lipoproteins and cardiovascular dysfunction. Mol Aspects Med. 1992;13(1):1–111. doi: 10.1016/0098-2997(92)90002-h. [DOI] [PubMed] [Google Scholar]
  20. Schumaker V. N., Puppione D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 1986;128:155–170. doi: 10.1016/0076-6879(86)28066-0. [DOI] [PubMed] [Google Scholar]
  21. Shio H., Haley N. J., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. II. Morphometric analysis of lipid-filled lysosomes and lipid droplets in aortic cell populations. Lab Invest. 1978 Oct;39(4):390–397. [PubMed] [Google Scholar]
  22. Tertov V. V., Orekhov A. N., Sobenin I. A., Gabbasov Z. A., Popov E. G., Yaroslavov A. A., Smirnov V. N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation. Circ Res. 1992 Jul;71(1):218–228. doi: 10.1161/01.res.71.1.218. [DOI] [PubMed] [Google Scholar]
  23. Tîrziu D., Dobrian A., Tasca C., Simionescu M., Simionescu N. Intimal thickenings of human aorta contain modified reassembled lipoproteins. Atherosclerosis. 1995 Jan 6;112(1):101–114. doi: 10.1016/0021-9150(94)05405-8. [DOI] [PubMed] [Google Scholar]
  24. Uchida K., Toyokuni S., Nishikawa K., Kawakishi S., Oda H., Hiai H., Stadtman E. R. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry. 1994 Oct 18;33(41):12487–12494. doi: 10.1021/bi00207a016. [DOI] [PubMed] [Google Scholar]
  25. Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xu S. Apolipoprotein(a) binds to low-density lipoprotein at two distant sites in lipoprotein(a). Biochemistry. 1998 Jun 30;37(26):9284–9294. doi: 10.1021/bi9729662. [DOI] [PubMed] [Google Scholar]
  27. Xu S., Arnsdorf M. F. Calibration of the scanning (atomic) force microscope with gold particles. J Microsc. 1994 Mar;173(Pt 3):199–210. doi: 10.1111/j.1365-2818.1994.tb03442.x. [DOI] [PubMed] [Google Scholar]
  28. Xu S., Arnsdorf M. F. Electrostatic force microscope for probing surface charges in aqueous solutions. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10384–10388. doi: 10.1073/pnas.92.22.10384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Xu S., Arnsdorf M. F. Scanning (atomic) force microscopy imaging of earthworm haemoglobin calibrated with spherical colloidal gold particles. J Microsc. 1997 Jul;187(Pt 1):43–53. doi: 10.1046/j.1365-2818.1997.1920753.x. [DOI] [PubMed] [Google Scholar]
  30. Xu S., Bevis B., Arnsdorf M. F. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Biophys J. 2001 Jul;81(1):446–454. doi: 10.1016/S0006-3495(01)75712-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xu X. X., Tabas I. Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages. J Biol Chem. 1991 Dec 25;266(36):24849–24858. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES