Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2614–2627. doi: 10.1016/S0006-3495(01)75905-X

Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel.

Z Wang 1, D Fedida 1
PMCID: PMC1301729  PMID: 11606275

Abstract

Sustained Na(+) or Li(+) conductance is a feature of the inactivated state in wild-type (WT) and nonconducting Shaker and Kv1.5 channels, and has been used here to investigate the cause of off-gating charge immobilization in WT and Kv1.5-W472F nonconducting mutant channels. Off-gating immobilization in response to brief pulses in cells perfused with NMG/NMG is the result of a more negative voltage dependence of charge recovery (V(1/2) is -96 mV) compared with on-gating charge movement (V(1/2) is -6.3 mV). This shift is known to be associated with slow inactivation in Shaker channels and the disparity is reduced by 40 mV, or approximately 50% in the presence of 135 mM Cs. Off-gating charge immobilization is voltage-dependent with a V(1/2) of -12 mV, and correlates well with the development of Na(+) conductance on repolarization through C-type inactivated channels (V(1/2) is -11 mV). As well, the time-dependent development of the inward Na(+) tail current and gating charge immobilization after depolarizing pulses of different durations has the same time constant (tau = 2.7 ms). These results indicate that in Kv1.5 channels the transition to a stable C-type inactivated state takes only 2-3 ms and results in strong charge immobilization in the absence of Group IA metal cations, or even in the presence of Na. Inclusion of low concentrations of Cs delays the appearance of Na(+) tail currents in WT channels, prevents transition to inactivated states in Kv1.5-W472F nonconducting mutant channels, and removes charge immobilization. Higher concentrations of Cs are able to modulate the deactivating transition in Kv1.5 channels and prevent the residual slowing of charge return.

Full Text

The Full Text of this article is available as a PDF (374.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baukrowitz T., Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995 Oct;15(4):951–960. doi: 10.1016/0896-6273(95)90185-x. [DOI] [PubMed] [Google Scholar]
  2. Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J. 1994 Apr;66(4):1011–1021. doi: 10.1016/S0006-3495(94)80882-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen F. S., Steele D., Fedida D. Allosteric effects of permeating cations on gating currents during K+ channel deactivation. J Gen Physiol. 1997 Aug;110(2):87–100. doi: 10.1085/jgp.110.2.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fedida D., Wible B., Wang Z., Fermini B., Faust F., Nattel S., Brown A. M. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res. 1993 Jul;73(1):210–216. doi: 10.1161/01.res.73.1.210. [DOI] [PubMed] [Google Scholar]
  5. Hurst R. S., Roux M. J., Toro L., Stefani E. External barium influences the gating charge movement of Shaker potassium channels. Biophys J. 1997 Jan;72(1):77–84. doi: 10.1016/S0006-3495(97)78648-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hurst R. S., Toro L., Stefani E. Molecular determinants of external barium block in Shaker potassium channels. FEBS Lett. 1996 Jun 10;388(1):59–65. doi: 10.1016/0014-5793(96)00516-9. [DOI] [PubMed] [Google Scholar]
  7. Kiss L., Immke D., LoTurco J., Korn S. J. The interaction of Na+ and K+ in voltage-gated potassium channels. Evidence for cation binding sites of different affinity. J Gen Physiol. 1998 Feb;111(2):195–206. doi: 10.1085/jgp.111.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kiss L., LoTurco J., Korn S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys J. 1999 Jan;76(1 Pt 1):253–263. doi: 10.1016/S0006-3495(99)77194-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kukuljan M., Labarca P., Latorre R. Molecular determinants of ion conduction and inactivation in K+ channels. Am J Physiol. 1995 Mar;268(3 Pt 1):C535–C556. doi: 10.1152/ajpcell.1995.268.3.C535. [DOI] [PubMed] [Google Scholar]
  10. Ledwell J. L., Aldrich R. W. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J Gen Physiol. 1999 Mar;113(3):389–414. doi: 10.1085/jgp.113.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loots E., Isacoff E. Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):377–389. doi: 10.1085/jgp.112.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  13. McCormack K., Joiner W. J., Heinemann S. H. A characterization of the activating structural rearrangements in voltage-dependent Shaker K+ channels. Neuron. 1994 Feb;12(2):301–315. doi: 10.1016/0896-6273(94)90273-9. [DOI] [PubMed] [Google Scholar]
  14. Olcese R., Latorre R., Toro L., Bezanilla F., Stefani E. Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. J Gen Physiol. 1997 Nov;110(5):579–589. doi: 10.1085/jgp.110.5.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perozo E., MacKinnon R., Bezanilla F., Stefani E. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron. 1993 Aug;11(2):353–358. doi: 10.1016/0896-6273(93)90190-3. [DOI] [PubMed] [Google Scholar]
  16. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Ion conduction through C-type inactivated Shaker channels. J Gen Physiol. 1997 Nov;110(5):539–550. doi: 10.1085/jgp.110.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F. J Gen Physiol. 1998 Jul;112(1):85–93. doi: 10.1085/jgp.112.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stefani E., Toro L., Perozo E., Bezanilla F. Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J. 1994 Apr;66(4):996–1010. doi: 10.1016/S0006-3495(94)80881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang Z., Hesketh J. C., Fedida D. A high-Na(+) conduction state during recovery from inactivation in the K(+) channel Kv1.5. Biophys J. 2000 Nov;79(5):2416–2433. doi: 10.1016/S0006-3495(00)76486-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang Z., Zhang X., Fedida D. Gating current studies reveal both intra- and extracellular cation modulation of K+ channel deactivation. J Physiol. 1999 Mar 1;515(Pt 2):331–339. doi: 10.1111/j.1469-7793.1999.331ac.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang Y., Yan Y., Sigworth F. J. How does the W434F mutation block current in Shaker potassium channels? J Gen Physiol. 1997 Jun;109(6):779–789. doi: 10.1085/jgp.109.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yellen G. Single channel seeks permeant ion for brief but intimate relationship. J Gen Physiol. 1997 Aug;110(2):83–85. doi: 10.1085/jgp.110.2.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zagotta W. N., Aldrich R. W. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol. 1990 Jan;95(1):29–60. doi: 10.1085/jgp.95.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zagotta W. N., Hoshi T., Aldrich R. W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol. 1994 Feb;103(2):321–362. doi: 10.1085/jgp.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zagotta W. N., Hoshi T., Dittman J., Aldrich R. W. Shaker potassium channel gating. II: Transitions in the activation pathway. J Gen Physiol. 1994 Feb;103(2):279–319. doi: 10.1085/jgp.103.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES