Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3016–3028. doi: 10.1016/S0006-3495(01)75942-5

Multi-stage regulation, a key to reliable adaptive biochemical pathways.

G Almogy 1, L Stone 1, N Ben-Tal 1
PMCID: PMC1301766  PMID: 11720972

Abstract

A general "multi-stage" regulation model, based on linearly connected regulatory units, is formulated to demonstrate how biochemical pathways may achieve high levels of accuracy. The general mechanism, which is robust to changes in biochemical parameters, such as protein concentration and kinetic rate constants, is incorporated into a mathematical model of the bacterial chemotaxis network and provides a new framework for explaining regulation and adaptiveness in this extensively studied system. Although conventional theories suggest that methylation feedback pathways are responsible for chemotactic regulation, the model, which is deduced from known experimental data, indicates that protein interactions downstream of the bacterial receptor complex, such as CheAs and CheZ, may play a crucial and complementary role.

Full Text

The Full Text of this article is available as a PDF (336.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon U., Camarena L., Surette M. G., Aguera y Arcas B., Liu Y., Leibler S., Stock J. B. Response regulator output in bacterial chemotaxis. EMBO J. 1998 Aug 3;17(15):4238–4248. doi: 10.1093/emboj/17.15.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon U., Surette M. G., Barkai N., Leibler S. Robustness in bacterial chemotaxis. Nature. 1999 Jan 14;397(6715):168–171. doi: 10.1038/16483. [DOI] [PubMed] [Google Scholar]
  3. Asakura S., Honda H. Two-state model for bacterial chemoreceptor proteins. The role of multiple methylation. J Mol Biol. 1984 Jul 5;176(3):349–367. doi: 10.1016/0022-2836(84)90494-7. [DOI] [PubMed] [Google Scholar]
  4. Barkai N., Leibler S. Bacterial chemotaxis. United we sense... Nature. 1998 May 7;393(6680):18-9, 21. doi: 10.1038/29881. [DOI] [PubMed] [Google Scholar]
  5. Barkai N., Leibler S. Robustness in simple biochemical networks. Nature. 1997 Jun 26;387(6636):913–917. doi: 10.1038/43199. [DOI] [PubMed] [Google Scholar]
  6. Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
  7. Blat Y., Gillespie B., Bren A., Dahlquist F. W., Eisenbach M. Regulation of phosphatase activity in bacterial chemotaxis. J Mol Biol. 1998 Dec 11;284(4):1191–1199. doi: 10.1006/jmbi.1998.2224. [DOI] [PubMed] [Google Scholar]
  8. Block S. M., Segall J. E., Berg H. C. Adaptation kinetics in bacterial chemotaxis. J Bacteriol. 1983 Apr;154(1):312–323. doi: 10.1128/jb.154.1.312-323.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bray D., Bourret R. B. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol Biol Cell. 1995 Oct;6(10):1367–1380. doi: 10.1091/mbc.6.10.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bray D., Bourret R. B., Simon M. I. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell. 1993 May;4(5):469–482. doi: 10.1091/mbc.4.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bray D., Levin M. D., Morton-Firth C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature. 1998 May 7;393(6680):85–88. doi: 10.1038/30018. [DOI] [PubMed] [Google Scholar]
  12. Bray D. Protein molecules as computational elements in living cells. Nature. 1995 Jul 27;376(6538):307–312. doi: 10.1038/376307a0. [DOI] [PubMed] [Google Scholar]
  13. Bren A., Eisenbach M. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol. 2000 Dec;182(24):6865–6873. doi: 10.1128/jb.182.24.6865-6873.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cluzel P., Surette M., Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 2000 Mar 3;287(5458):1652–1655. doi: 10.1126/science.287.5458.1652. [DOI] [PubMed] [Google Scholar]
  15. Edwards J. S., Ibarra R. U., Palsson B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001 Feb;19(2):125–130. doi: 10.1038/84379. [DOI] [PubMed] [Google Scholar]
  16. Eisenbach M. Control of bacterial chemotaxis. Mol Microbiol. 1996 Jun;20(5):903–910. doi: 10.1111/j.1365-2958.1996.tb02531.x. [DOI] [PubMed] [Google Scholar]
  17. Ellgaard L., Molinari M., Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999 Dec 3;286(5446):1882–1888. doi: 10.1126/science.286.5446.1882. [DOI] [PubMed] [Google Scholar]
  18. Falke J. J., Hazelbauer G. L. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci. 2001 Apr;26(4):257–265. doi: 10.1016/s0968-0004(00)01770-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Füllekrug J., Nilsson T. Protein sorting in the Golgi complex. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):77–84. doi: 10.1016/S0167-4889(98)00048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gegner J. A., Graham D. R., Roth A. F., Dahlquist F. W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992 Sep 18;70(6):975–982. doi: 10.1016/0092-8674(92)90247-a. [DOI] [PubMed] [Google Scholar]
  21. Hauri D. C., Ross J. A model of excitation and adaptation in bacterial chemotaxis. Biophys J. 1995 Feb;68(2):708–722. doi: 10.1016/S0006-3495(95)80232-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang C., Stewart R. C. CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis. Biochim Biophys Acta. 1993 Oct 6;1202(2):297–304. doi: 10.1016/0167-4838(93)90019-n. [DOI] [PubMed] [Google Scholar]
  23. Ibba M., Söll D. Quality control mechanisms during translation. Science. 1999 Dec 3;286(5446):1893–1897. doi: 10.1126/science.286.5446.1893. [DOI] [PubMed] [Google Scholar]
  24. Lamb T. D. Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):566–570. doi: 10.1073/pnas.93.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lauffenburger D. A. Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci U S A. 2000 May 9;97(10):5031–5033. doi: 10.1073/pnas.97.10.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li G., Weis R. M. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell. 2000 Feb 4;100(3):357–365. doi: 10.1016/s0092-8674(00)80671-6. [DOI] [PubMed] [Google Scholar]
  27. Liu Y., Levit M., Lurz R., Surette M. G., Stock J. B. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J. 1997 Dec 15;16(24):7231–7240. doi: 10.1093/emboj/16.24.7231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lybarger S. R., Maddock J. R. Clustering of the chemoreceptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB. J Bacteriol. 1999 Sep;181(17):5527–5529. doi: 10.1128/jb.181.17.5527-5529.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Macnab R. M. Structural biology: Protein crystal mimics reality. Nature. 2001 Mar 15;410(6826):321–322. doi: 10.1038/35066677. [DOI] [PubMed] [Google Scholar]
  30. McNamara B. P., Wolfe A. J. Coexpression of the long and short forms of CheA, the chemotaxis histidine kinase, by members of the family Enterobacteriaceae. J Bacteriol. 1997 Mar;179(5):1813–1818. doi: 10.1128/jb.179.5.1813-1818.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morton-Firth C. J., Shimizu T. S., Bray D. A free-energy-based stochastic simulation of the Tar receptor complex. J Mol Biol. 1999 Mar 5;286(4):1059–1074. doi: 10.1006/jmbi.1999.2535. [DOI] [PubMed] [Google Scholar]
  32. Robinson V. L., Buckler D. R., Stock A. M. A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol. 2000 Aug;7(8):626–633. doi: 10.1038/77915. [DOI] [PubMed] [Google Scholar]
  33. Samatey F. A., Imada K., Nagashima S., Vonderviszt F., Kumasaka T., Yamamoto M., Namba K. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature. 2001 Mar 15;410(6826):331–337. doi: 10.1038/35066504. [DOI] [PubMed] [Google Scholar]
  34. Sanatinia H., Kofoid E. C., Morrison T. B., Parkinson J. S. The smaller of two overlapping cheA gene products is not essential for chemotaxis in Escherichia coli. J Bacteriol. 1995 May;177(10):2713–2720. doi: 10.1128/jb.177.10.2713-2720.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanna M. G., Simon M. I. In vivo and in vitro characterization of Escherichia coli protein CheZ gain- and loss-of-function mutants. J Bacteriol. 1996 Nov;178(21):6275–6280. doi: 10.1128/jb.178.21.6275-6280.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Segall J. E., Block S. M., Berg H. C. Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8987–8991. doi: 10.1073/pnas.83.23.8987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Segall J. E., Manson M. D., Berg H. C. Signal processing times in bacterial chemotaxis. Nature. 1982 Apr 29;296(5860):855–857. doi: 10.1038/296855a0. [DOI] [PubMed] [Google Scholar]
  38. Segel L. A., Goldbeter A., Devreotes P. N., Knox B. E. A mechanism for exact sensory adaptation based on receptor modification. J Theor Biol. 1986 May 21;120(2):151–179. doi: 10.1016/s0022-5193(86)80171-0. [DOI] [PubMed] [Google Scholar]
  39. Sourjik V., Berg H. C. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol. 2000 Aug;37(4):740–751. doi: 10.1046/j.1365-2958.2000.02044.x. [DOI] [PubMed] [Google Scholar]
  40. Spiro P. A., Parkinson J. S., Othmer H. G. A model of excitation and adaptation in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7263–7268. doi: 10.1073/pnas.94.14.7263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stock J., Kersulis G., Koshland D. E., Jr Neither methylating nor demethylating enzymes are required for bacterial chemotaxis. Cell. 1985 Sep;42(2):683–690. doi: 10.1016/0092-8674(85)90125-4. [DOI] [PubMed] [Google Scholar]
  42. Turner L., Ryu W. S., Berg H. C. Real-time imaging of fluorescent flagellar filaments. J Bacteriol. 2000 May;182(10):2793–2801. doi: 10.1128/jb.182.10.2793-2801.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang H., Matsumura P. Characterization of the CheAS/CheZ complex: a specific interaction resulting in enhanced dephosphorylating activity on CheY-phosphate. Mol Microbiol. 1996 Feb;19(4):695–703. doi: 10.1046/j.1365-2958.1996.393934.x. [DOI] [PubMed] [Google Scholar]
  44. Wang H., Matsumura P. Phosphorylating and dephosphorylating protein complexes in bacterial chemotaxis. J Bacteriol. 1997 Jan;179(1):287–289. doi: 10.1128/jb.179.1.287-289.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yi T. M., Huang Y., Simon M. I., Doyle J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4649–4653. doi: 10.1073/pnas.97.9.4649. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES