Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Dec;81(6):3178–3192. doi: 10.1016/S0006-3495(01)75954-1

Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding.

J C Lee 1, D E Discher 1
PMCID: PMC1301778  PMID: 11720984

Abstract

To assess local elasticity in the red cell's spectrin-actin network, nano-particles were tethered to actin nodes and their constrained thermal motions were tracked. Cells were both immobilized and controllably deformed by aspiration into a micropipette. Since the network is well-appreciated as soft, thermal fluctuations even in an unstressed portion of network were expected to be many tens of nanometers based on simple equipartition ideas. Real-time particle tracking indeed reveals such root-mean-squared motions for 40-nm fluorescent beads either tethered to actin directly within a cell ghost or connected to actin from outside a cell via glycophorin. Moreover, the elastically constrained displacements are significant on the scale of the network's internodal distance of approximately 60-80 nm. Surprisingly, along the aspirated projection-where the network is axially extended by as much as twofold or more-fluctuations in the axial direction are increased by almost twofold relative to motions in the unstressed network. The molecular basis for such strain softening is discussed broadly in terms of force-driven transitions. Specific considerations are given to 1) protein dissociations that reduce network connectivity, and 2) unfolding kinetics of a localized few of the red cell's approximately 10(7) spectrin repeats.

Full Text

The Full Text of this article is available as a PDF (460.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahsan A., Rudnick J., Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition. Biophys J. 1998 Jan;74(1):132–137. doi: 10.1016/S0006-3495(98)77774-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boey S. K., Boal D. H., Discher D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J. 1998 Sep;75(3):1573–1583. doi: 10.1016/S0006-3495(98)74075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byers T. J., Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6153–6157. doi: 10.1073/pnas.82.18.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carl P., Kwok C. H., Manderson G., Speicher D. W., Discher D. E. Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proc Natl Acad Sci U S A. 2001 Jan 30;98(4):1565–1570. doi: 10.1073/pnas.031409698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrion-Vazquez M., Marszalek P. E., Oberhauser A. F., Fernandez J. M. Atomic force microscopy captures length phenotypes in single proteins. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11288–11292. doi: 10.1073/pnas.96.20.11288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chasis J. A., Mohandas N. Red blood cell glycophorins. Blood. 1992 Oct 15;80(8):1869–1879. [PubMed] [Google Scholar]
  7. DeSilva T. M., Peng K. C., Speicher K. D., Speicher D. W. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. Biochemistry. 1992 Nov 10;31(44):10872–10878. doi: 10.1021/bi00159a030. [DOI] [PubMed] [Google Scholar]
  8. Discher D. E., Boal D. H., Boey S. K. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J. 1998 Sep;75(3):1584–1597. doi: 10.1016/S0006-3495(98)74076-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Discher D. E., Mohandas N., Evans E. A. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science. 1994 Nov 11;266(5187):1032–1035. doi: 10.1126/science.7973655. [DOI] [PubMed] [Google Scholar]
  10. Discher D. E., Mohandas N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys J. 1996 Oct;71(4):1680–1694. doi: 10.1016/S0006-3495(96)79424-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Discher D. E., Winardi R., Schischmanoff P. O., Parra M., Conboy J. G., Mohandas N. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol. 1995 Aug;130(4):897–907. doi: 10.1083/jcb.130.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans E. A. A new material concept for the red cell membrane. Biophys J. 1973 Sep;13(9):926–940. doi: 10.1016/S0006-3495(73)86035-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans E., Leung A., Hammer D., Simon S. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):3784–3789. doi: 10.1073/pnas.061324998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans E., Mohandas N., Leung A. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. J Clin Invest. 1984 Feb;73(2):477–488. doi: 10.1172/JCI111234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans E., Ritchie K. Strength of a weak bond connecting flexible polymer chains. Biophys J. 1999 May;76(5):2439–2447. doi: 10.1016/S0006-3495(99)77399-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
  17. Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hansen J. C., Skalak R., Chien S., Hoger A. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J. 1997 May;72(5):2369–2381. doi: 10.1016/S0006-3495(97)78882-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Helfer E., Harlepp S., Bourdieu L., Robert J., MacKintosh F. C., Chatenay D. Microrheology of biopolymer-membrane complexes. Phys Rev Lett. 2000 Jul 10;85(2):457–460. doi: 10.1103/PhysRevLett.85.457. [DOI] [PubMed] [Google Scholar]
  20. Hicks B. W., Angelides K. J. Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision. J Membr Biol. 1995 Apr;144(3):231–244. doi: 10.1007/BF00236836. [DOI] [PubMed] [Google Scholar]
  21. Hochmuth R. M., Waugh R. E. Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol. 1987;49:209–219. doi: 10.1146/annurev.ph.49.030187.001233. [DOI] [PubMed] [Google Scholar]
  22. Hénon S., Lenormand G., Richert A., Gallet F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J. 1999 Feb;76(2):1145–1151. doi: 10.1016/S0006-3495(99)77279-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee J. C., Wong D. T., Discher D. E. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys J. 1999 Aug;77(2):853–864. doi: 10.1016/S0006-3495(99)76937-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lenne P. F., Raae A. J., Altmann S. M., Saraste M., Hörber J. K. States and transitions during forced unfolding of a single spectrin repeat. FEBS Lett. 2000 Jul 7;476(3):124–128. doi: 10.1016/s0014-5793(00)01704-x. [DOI] [PubMed] [Google Scholar]
  25. Lieber M. R., Steck T. L. Hemolytic holes in human erythrocyte membrane ghosts. Methods Enzymol. 1989;173:356–367. doi: 10.1016/s0076-6879(89)73023-8. [DOI] [PubMed] [Google Scholar]
  26. Liphardt J., Onoa B., Smith S. B., Tinoco I., Jr, Bustamante C. Reversible unfolding of single RNA molecules by mechanical force. Science. 2001 Apr 27;292(5517):733–737. doi: 10.1126/science.1058498. [DOI] [PubMed] [Google Scholar]
  27. Markle D. R., Evans E. A., Hochmuth R. M. Force relaxation and permanent deformation of erythrocyte membrane. Biophys J. 1983 Apr;42(1):91–98. doi: 10.1016/S0006-3495(83)84372-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McGrath J. L., Hartwig J. H., Kuo S. C. The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophys J. 2000 Dec;79(6):3258–3266. doi: 10.1016/S0006-3495(00)76558-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mohandas N., Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
  30. Ohanian V., Wolfe L. C., John K. M., Pinder J. C., Lux S. E., Gratzer W. B. Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1. Biochemistry. 1984 Sep 11;23(19):4416–4420. doi: 10.1021/bi00314a027. [DOI] [PubMed] [Google Scholar]
  31. Picart C., Dalhaimer P., Discher D. E. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton. Biophys J. 2000 Dec;79(6):2987–3000. doi: 10.1016/S0006-3495(00)76535-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Picart C., Discher D. E. Actin protofilament orientation at the erythrocyte membrane. Biophys J. 1999 Aug;77(2):865–878. doi: 10.1016/S0006-3495(99)76938-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  34. Rief M., Pascual J., Saraste M., Gaub H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol. 1999 Feb 19;286(2):553–561. doi: 10.1006/jmbi.1998.2466. [DOI] [PubMed] [Google Scholar]
  35. Sheetz M. P., Turney S., Qian H., Elson E. L. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989 Jul 27;340(6231):284–288. doi: 10.1038/340284a0. [DOI] [PubMed] [Google Scholar]
  36. Shen B. W., Josephs R., Steck T. L. Ultrastructure of the intact skeleton of the human erythrocyte membrane. J Cell Biol. 1986 Mar;102(3):997–1006. doi: 10.1083/jcb.102.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simson D. A., Ziemann F., Strigl M., Merkel R. Micropipet-based pico force transducer: in depth analysis and experimental verification. Biophys J. 1998 Apr;74(4):2080–2088. doi: 10.1016/S0006-3495(98)77915-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stokke B. T., Mikkelsen A., Elgsaeter A. The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties. Eur Biophys J. 1986;13(4):203–218. doi: 10.1007/BF00260368. [DOI] [PubMed] [Google Scholar]
  39. Strey H., Peterson M., Sackmann E. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J. 1995 Aug;69(2):478–488. doi: 10.1016/S0006-3495(95)79921-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takakuwa Y., Tchernia G., Rossi M., Benabadji M., Mohandas N. Restoration of normal membrane stability to unstable protein 4.1-deficient erythrocyte membranes by incorporation of purified protein 4.1. J Clin Invest. 1986 Jul;78(1):80–85. doi: 10.1172/JCI112577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takeuchi M., Miyamoto H., Sako Y., Komizu H., Kusumi A. Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J. 1998 May;74(5):2171–2183. doi: 10.1016/S0006-3495(98)77926-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tolomeo J. A., Steele C. R., Holley M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophys J. 1996 Jul;71(1):421–429. doi: 10.1016/S0006-3495(96)79244-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tomishige M., Kusumi A. Compartmentalization of the erythrocyte membrane by the membrane skeleton: intercompartmental hop diffusion of band 3. Mol Biol Cell. 1999 Aug;10(8):2475–2479. doi: 10.1091/mbc.10.8.2475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ursitti J. A., Fowler V. M. Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons. J Cell Sci. 1994 Jun;107(Pt 6):1633–1639. doi: 10.1242/jcs.107.6.1633. [DOI] [PubMed] [Google Scholar]
  45. Waugh R. E., Agre P. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J Clin Invest. 1988 Jan;81(1):133–141. doi: 10.1172/JCI113284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yamada S., Wirtz D., Kuo S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys J. 2000 Apr;78(4):1736–1747. doi: 10.1016/S0006-3495(00)76725-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES