Abstract
The phase behavior of a 1-[(2)H(35)]-stearoyl-rac-glycerol ([(2)H(35)]-MSG)/dicetylphosphate (DCP) mixture and its interaction with beta-lactoglobulin and lysozyme were studied by (2)H and (31)P nuclear magnetic resonance (NMR). The behavior of the lipids was monitored by using deuterium-labeled [(2)H(35)]-MSG as a selective probe for (2)H NMR and DCP for (31)P NMR. Both (2)H and (31)P NMR spectra exhibit characteristic features representative of different phases. In the lamellar phases, (31)P NMR spectra of DCP are different from the spectra of natural phospholipids, which is attributable to differences in the intramolecular motions and the orientation of the shielding tensor of DCP compared with phospholipids. The presence of the negatively charged amphiphile DCP has a large effect on the phase behavior of [(2)H(35)]-MSG. At low temperature, the presence of DCP inhibits crystallization of the gel phase into the coagel. Upon increasing the temperature, the gel phase of [(2)H(35)]-MSG transforms in the liquid-crystalline lamellar phase. In the presence of DCP, the gel phase directly transforms into an isotropic phase. The negatively charged beta-lactoglobulin and the positively charged lysozyme completely neutralize the destabilizing effect of DCP on the monoglyceride liquid-crystalline phase and they even stabilize this phase. Without DCP the proteins do not seem to interact with the monoglyceride. These results suggest that interaction is facilitated by electrostatic interactions between the negatively charged DCP and positively charged residues in the proteins. In addition, the nonbilayer-forming DCP creates insertion sites for proteins in the bilayer.
Full Text
The Full Text of this article is available as a PDF (181.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ai X., Caffrey M. Membrane protein crystallization in lipidic mesophases: detergent effects. Biophys J. 2000 Jul;79(1):394–405. doi: 10.1016/S0006-3495(00)76301-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boots J. P., Chupin V., Killian J. A., Demel R. A., de Kruijff B. The specificity of monoglyceride-protein interactions and mechanism of the protein induced L(beta) to coagel phase transition. Biochim Biophys Acta. 2001 Feb 9;1510(1-2):401–413. doi: 10.1016/s0005-2736(00)00372-2. [DOI] [PubMed] [Google Scholar]
- Boots J. W., Chupin V., Killian J. A., Demel R. A., de Kruijff B. Interaction mode specific reorganization of gel phase monoglyceride bilayers by beta-lactoglobulin. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):241–251. doi: 10.1016/s0005-2736(99)00109-1. [DOI] [PubMed] [Google Scholar]
- Briggs J., Caffrey M. The temperature-composition phase diagram of monomyristolein in water: equilibrium and metastability aspects. Biophys J. 1994 Mar;66(3 Pt 1):573–587. doi: 10.1016/s0006-3495(94)80847-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chupin V., Boots J. W., Killian J. A., Demel R. A., de Kruijff B. Lipid organization and dynamics of the monostearoylglycerol-water system. A 2H NMR study. Chem Phys Lipids. 2001 Jan;109(1):15–28. doi: 10.1016/s0009-3084(00)00206-1. [DOI] [PubMed] [Google Scholar]
- Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
- Ericsson B., Larsson K., Fontell K. A cubic protein-monoolein-water phase. Biochim Biophys Acta. 1983 Mar 23;729(1):23–27. doi: 10.1016/0005-2736(83)90451-0. [DOI] [PubMed] [Google Scholar]
- Herzfeld J., Griffin R. G., Haberkorn R. A. Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. Biochemistry. 1978 Jul 11;17(14):2711–2718. doi: 10.1021/bi00607a003. [DOI] [PubMed] [Google Scholar]
- Huang C., Mason J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci U S A. 1978 Jan;75(1):308–310. doi: 10.1073/pnas.75.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iametti S., De Gregori B., Vecchio G., Bonomi F. Modifications occur at different structural levels during the heat denaturation of beta-lactoglobulin. Eur J Biochem. 1996 Apr 1;237(1):106–112. doi: 10.1111/j.1432-1033.1996.0106n.x. [DOI] [PubMed] [Google Scholar]
- Israelachvili J. N., Mitchell D. J., Ninham B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta. 1977 Oct 17;470(2):185–201. doi: 10.1016/0005-2736(77)90099-2. [DOI] [PubMed] [Google Scholar]
- Kolbe M., Besir H., Essen L. O., Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science. 2000 May 26;288(5470):1390–1396. doi: 10.1126/science.288.5470.1390. [DOI] [PubMed] [Google Scholar]
- Krog N., Larsson K. Phase behaviour and rheological properties of aqueous systems of industrial distilled monoglycerides. Chem Phys Lipids. 1968 Feb;2(1):129–143. doi: 10.1016/0009-3084(68)90038-8. [DOI] [PubMed] [Google Scholar]
- Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532–14535. doi: 10.1073/pnas.93.25.14532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leenhouts J. M., Demel R. A., de Kruijff B., Boots J. W. Charge-dependent insertion of beta-lactoglobulin into monoglyceride monolayers. Biochim Biophys Acta. 1997 Nov 13;1330(1):61–70. doi: 10.1016/s0005-2736(97)00142-9. [DOI] [PubMed] [Google Scholar]
- Lutton E. S. Phase behavior of aqueous systems of monoglycerides. J Am Oil Chem Soc. 1965 Dec;42(12):1068–1070. doi: 10.1007/BF02636909. [DOI] [PubMed] [Google Scholar]
- Qiu H., Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000 Feb;21(3):223–234. doi: 10.1016/s0142-9612(99)00126-x. [DOI] [PubMed] [Google Scholar]
- Rummel G, Hardmeyer A, Widmer C, Chiu ML, Nollert P, Locher KP, Pedruzzi I, I, Landau EM, Rosenbusch JP. Lipidic Cubic Phases: New Matrices for the Three-Dimensional Crystallization of Membrane Proteins. J Struct Biol. 1998;121(2):82–91. doi: 10.1006/jsbi.1997.3952. [DOI] [PubMed] [Google Scholar]
- Scherer P. G., Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989 Sep 19;28(19):7720–7728. doi: 10.1021/bi00445a030. [DOI] [PubMed] [Google Scholar]
- Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
- de Kruijff B. Biomembranes. Lipids beyond the bilayer. Nature. 1997 Mar 13;386(6621):129–130. doi: 10.1038/386129a0. [DOI] [PubMed] [Google Scholar]
- de Kruijff B. Lipid polymorphism and biomembrane function. Curr Opin Chem Biol. 1997 Dec;1(4):564–569. doi: 10.1016/s1367-5931(97)80053-1. [DOI] [PubMed] [Google Scholar]
- van den Brink-van der Laan E., Dalbey R. E., Demel R. A., Killian J. A., de Kruijff B. Effect of nonbilayer lipids on membrane binding and insertion of the catalytic domain of leader peptidase. Biochemistry. 2001 Aug 14;40(32):9677–9684. doi: 10.1021/bi002903a. [DOI] [PubMed] [Google Scholar]