Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):944–962. doi: 10.1016/S0006-3495(02)75455-6

Monte Carlo simulations of supercoiled DNAs confined to a plane.

Bryant S Fujimoto 1, J Michael Schurr 1
PMCID: PMC1301902  PMID: 11806935

Abstract

Recent advances in atomic force microscopy (AFM) have enabled researchers to obtain images of supercoiled DNAs deposited on mica surfaces in buffered aqueous milieux. Confining a supercoiled DNA to a plane greatly restricts its configurational freedom, and could conceivably alter certain structural properties, such as its twist and writhe. A program that was originally written to perform Monte Carlo simulations of supercoiled DNAs in solution was modified to include a surface potential. This potential flattens the DNAs to simulate the effect of deposition on a surface. We have simulated transfers of a 3760-basepair supercoiled DNA from solution to a surface in both 161 and 10 mM ionic strength. In both cases, the geometric and thermodynamic properties of the supercoiled DNAs on the surface differ significantly from the corresponding quantities in solution. At 161 mM ionic strength, the writhe/twist ratio is 1.20-1.33 times larger for DNAs on the surface than for DNAs in solution and significant differences in the radii of gyration are also observed. Simulated surface structures in 161 mM ionic strength closely resemble those observed by AFM. Simulated surface structures in 10 mM ionic strength are similar to a minority of the structures observed by AFM, but differ from the majority of such structures for unknown reasons. In 161 mM ionic strength, the internal energy (excluding the surface potential) decreases substantially as the DNA is confined to the surface. Evidently, supercoiled DNAs in solution are typically deformed farther from the minimum energy configuration than are the corresponding surface-confined DNAs. Nevertheless, the work (Delta A(int)) done on the internal coordinates, which include uniform rotations at constant configuration, during the transfer is positive and 2.6-fold larger than the decrease in internal energy. The corresponding entropy change is negative, and its contribution to Delta A(int) is positive and exceeds the decrease in internal energy by 3.6 fold. The work done on the internal coordinates during the solution-to-surface transfer is directed primarily toward reducing their entropy. Evidently, the number of configurations available to the more deformed solution DNA is vastly greater than for the less deformed surface-confined DNA.

Full Text

The Full Text of this article is available as a PDF (265.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian M., ten Heggeler-Bordier B., Wahli W., Stasiak A. Z., Stasiak A., Dubochet J. Direct visualization of supercoiled DNA molecules in solution. EMBO J. 1990 Dec;9(13):4551–4554. doi: 10.1002/j.1460-2075.1990.tb07907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bednar J., Furrer P., Stasiak A., Dubochet J., Egelman E. H., Bates A. D. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. J Mol Biol. 1994 Jan 21;235(3):825–847. doi: 10.1006/jmbi.1994.1042. [DOI] [PubMed] [Google Scholar]
  3. Boles T. C., White J. H., Cozzarelli N. R. Structure of plectonemically supercoiled DNA. J Mol Biol. 1990 Jun 20;213(4):931–951. doi: 10.1016/S0022-2836(05)80272-4. [DOI] [PubMed] [Google Scholar]
  4. Bustamante C., Vesenka J., Tang C. L., Rees W., Guthold M., Keller R. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry. 1992 Jan 14;31(1):22–26. doi: 10.1021/bi00116a005. [DOI] [PubMed] [Google Scholar]
  5. Delrow J. J., Gebe J. A., Schurr J. M. Comparison of hard-cylinder and screened Coulomb interactions in the modeling of supercoiled DNAs. Biopolymers. 1997 Oct 5;42(4):455–470. doi: 10.1002/(SICI)1097-0282(19971005)42:4<455::AID-BIP8>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  6. Delrow J. J., Heath P. J., Fujimoto B. S., Schurr J. M. Effect of temperature on DNA secondary structure in the absence and presence of 0.5 M tetramethylammonium chloride. Biopolymers. 1998 Jun;45(7):503–515. doi: 10.1002/(SICI)1097-0282(199806)45:7<503::AID-BIP4>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  7. Delrow J. J., Heath P. J., Schurr J. M. On the origin of the temperature dependence of the supercoiling free energy. Biophys J. 1997 Nov;73(5):2688–2701. doi: 10.1016/S0006-3495(97)78297-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fain B., Rudnick J. Conformations of closed DNA. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt B):7239–7252. doi: 10.1103/physreve.60.7239. [DOI] [PubMed] [Google Scholar]
  9. Fenley M. O., Olson W. K., Tobias I., Manning G. S. Electrostatic effects in short superhelical DNA. Biophys Chem. 1994 Jun;50(3):255–271. doi: 10.1016/0301-4622(93)e0094-l. [DOI] [PubMed] [Google Scholar]
  10. Gebe J. A., Allison S. A., Clendenning J. B., Schurr J. M. Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs. Biophys J. 1995 Feb;68(2):619–633. doi: 10.1016/S0006-3495(95)80223-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gebe J. A., Delrow J. J., Heath P. J., Fujimoto B. S., Stewart D. W., Schurr J. M. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. J Mol Biol. 1996 Sep 20;262(2):105–128. doi: 10.1006/jmbi.1996.0502. [DOI] [PubMed] [Google Scholar]
  12. Gebe J. A., Schurr J. M. Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation. Biopolymers. 1996 Apr;38(4):493–503. doi: 10.1002/(SICI)1097-0282(199604)38:4%3C493::AID-BIP5%3E3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  13. Hammermann M., Brun N., Klenin K. V., May R., Tóth K., Langowski J. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations. Biophys J. 1998 Dec;75(6):3057–3063. doi: 10.1016/S0006-3495(98)77746-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hammermann M., Steinmaier C., Merlitz H., Kapp U., Waldeck W., Chirico G., Langowski J. Salt effects on the structure and internal dynamics of superhelical DNAs studied by light scattering and Brownian dynamics. Biophys J. 1997 Nov;73(5):2674–2687. doi: 10.1016/S0006-3495(97)78296-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hansma H. G., Vesenka J., Siegerist C., Kelderman G., Morrett H., Sinsheimer R. L., Elings V., Bustamante C., Hansma P. K. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science. 1992 May 22;256(5060):1180–1184. doi: 10.1126/science.256.5060.1180. [DOI] [PubMed] [Google Scholar]
  16. Hao M. H., Olson W. K. Modeling DNA supercoils and knots with B-spline functions. Biopolymers. 1989 Apr;28(4):873–900. doi: 10.1002/bip.360280407. [DOI] [PubMed] [Google Scholar]
  17. Hao M. H., Olson W. K. Molecular modeling and energy refinement of supercoiled DNA. J Biomol Struct Dyn. 1989 Dec;7(3):661–692. doi: 10.1080/07391102.1989.10508513. [DOI] [PubMed] [Google Scholar]
  18. Heath P. J., Clendenning J. B., Fujimoto B. S., Schurr J. M. Effect of bending strain on the torsion elastic constant of DNA. J Mol Biol. 1996 Aug 2;260(5):718–730. doi: 10.1006/jmbi.1996.0432. [DOI] [PubMed] [Google Scholar]
  19. Jian H., Schlick T., Vologodskii A. Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. J Mol Biol. 1998 Nov 27;284(2):287–296. doi: 10.1006/jmbi.1998.2170. [DOI] [PubMed] [Google Scholar]
  20. Lyubchenko Y. L., Gall A. A., Shlyakhtenko L. S., Harrington R. E., Jacobs B. L., Oden P. I., Lindsay S. M. Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn. 1992 Dec;10(3):589–606. doi: 10.1080/07391102.1992.10508670. [DOI] [PubMed] [Google Scholar]
  21. Lyubchenko Y. L., Shlyakhtenko L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):496–501. doi: 10.1073/pnas.94.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lyubchenko Y., Shlyakhtenko L., Harrington R., Oden P., Lindsay S. Atomic force microscopy of long DNA: imaging in air and under water. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2137–2140. doi: 10.1073/pnas.90.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martino J. A., Olson W. K. Modeling chain folding in protein-constrained circular DNA. Biophys J. 1998 May;74(5):2491–2500. doi: 10.1016/S0006-3495(98)77957-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Menes R, Pincus P, Stein B. Charge fluctuations on membrane surfaces in water. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt B):2981–2984. doi: 10.1103/physreve.62.2981. [DOI] [PubMed] [Google Scholar]
  25. Naimushin A. N., Fujimoto B. S., Schurr J. M. Dynamic bending rigidity of a 200-bp DNA in 4 mM ionic strength: a transient polarization grating study. Biophys J. 2000 Mar;78(3):1498–1518. doi: 10.1016/S0006-3495(00)76703-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Podtelezhnikov A. A., Cozzarelli N. R., Vologodskii A. V. Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):12974–12979. doi: 10.1073/pnas.96.23.12974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rippe K., Mücke N., Langowski J. Superhelix dimensions of a 1868 base pair plasmid determined by scanning force microscopy in air and in aqueous solution. Nucleic Acids Res. 1997 May 1;25(9):1736–1744. doi: 10.1093/nar/25.9.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rybenkov V. V., Vologodskii A. V., Cozzarelli N. R. The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res. 1997 Apr 1;25(7):1412–1418. doi: 10.1093/nar/25.7.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rybenkov V. V., Vologodskii A. V., Cozzarelli N. R. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J Mol Biol. 1997 Mar 28;267(2):299–311. doi: 10.1006/jmbi.1996.0876. [DOI] [PubMed] [Google Scholar]
  30. Schurr J. M., Babcock H. P., Gebe J. A. Effect of anisotropy of the bending rigidity on the supercoiling free energy of small circular DNAs. Biopolymers. 1995 Nov;36(5):633–641. doi: 10.1002/bip.360360509. [DOI] [PubMed] [Google Scholar]
  31. Schurr J. M., Delrow J. J., Fujimoto B. S., Benight A. S. The question of long-range allosteric transitions in DNA. Biopolymers. 1997;44(3):283–308. doi: 10.1002/(SICI)1097-0282(1997)44:3<283::AID-BIP7>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  32. Shibata J. H., Wilcoxon J., Schurr J. M., Knauf V. Structures and dynamics of a supercoiled DNA. Biochemistry. 1984 Mar 13;23(6):1188–1194. doi: 10.1021/bi00301a025. [DOI] [PubMed] [Google Scholar]
  33. Song L., Fujimoto B. S., Wu P. G., Thomas J. C., Shibata J. H., Schurr J. M. Evidence for allosteric transitions in secondary structure induced by superhelical stress. J Mol Biol. 1990 Jul 5;214(1):307–326. doi: 10.1016/0022-2836(90)90163-g. [DOI] [PubMed] [Google Scholar]
  34. Sprous D., Tan R. K., Harvey S. C. Molecular modeling of closed circular DNA thermodynamic ensembles. Biopolymers. 1996 Aug;39(2):243–258. doi: 10.1002/(SICI)1097-0282(199608)39:2%3C243::AID-BIP11%3E3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  35. Stigter D. Interactions of highly charged colloidal cylinders with applications to double-stranded. Biopolymers. 1977 Jul;16(7):1435–1448. doi: 10.1002/bip.1977.360160705. [DOI] [PubMed] [Google Scholar]
  36. Swigon D., Coleman B. D., Tobias I. The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. Biophys J. 1998 May;74(5):2515–2530. doi: 10.1016/S0006-3495(98)77960-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ubbink J., Odijk T. Electrostatic-undulatory theory of plectonemically supercoiled DNA. Biophys J. 1999 May;76(5):2502–2519. doi: 10.1016/S0006-3495(99)77405-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Velichko Y. S., Yoshikawa K., Khokhlov A. R. Surface-induced DNA superhelicity. Biomacromolecules. 2000 Fall;1(3):459–465. doi: 10.1021/bm000021l. [DOI] [PubMed] [Google Scholar]
  39. Vesenka J., Guthold M., Tang C. L., Keller D., Delaine E., Bustamante C. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy. 1992 Jul;42-44(Pt B):1243–1249. doi: 10.1016/0304-3991(92)90430-r. [DOI] [PubMed] [Google Scholar]
  40. Vologodskii A. V., Cozzarelli N. R. Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct. 1994;23:609–643. doi: 10.1146/annurev.bb.23.060194.003141. [DOI] [PubMed] [Google Scholar]
  41. Vologodskii A. V., Levene S. D., Klenin K. V., Frank-Kamenetskii M., Cozzarelli N. R. Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol. 1992 Oct 20;227(4):1224–1243. doi: 10.1016/0022-2836(92)90533-p. [DOI] [PubMed] [Google Scholar]
  42. Wu P. G., Fujimoto B. S., Song L., Schurr J. M. Effect of ethidium on the torsion constants of linear and supercoiled DNAs. Biophys Chem. 1991 Dec;41(3):217–236. doi: 10.1016/0301-4622(91)85038-r. [DOI] [PubMed] [Google Scholar]
  43. Wu P. G., Song L., Clendenning J. B., Fujimoto B. S., Benight A. S., Schurr J. M. Interaction of chloroquine with linear and supercoiled DNAs. Effect on the torsional dynamics, rigidity, and twist energy parameter. Biochemistry. 1988 Oct 18;27(21):8128–8144. doi: 10.1021/bi00421a023. [DOI] [PubMed] [Google Scholar]
  44. Wu P., Schurr J. M. Effects of chloroquine on the torsional dynamics and rigidities of linear and supercoiled DNAs at low ionic strength. Biopolymers. 1989 Oct;28(10):1695–1703. doi: 10.1002/bip.360281005. [DOI] [PubMed] [Google Scholar]
  45. Yang Y., Westcott T. P., Pedersen S. C., Tobias I., Olson W. K. Effects of localized bending on DNA supercoiling. Trends Biochem Sci. 1995 Aug;20(8):313–319. doi: 10.1016/s0968-0004(00)89058-1. [DOI] [PubMed] [Google Scholar]
  46. Zhang P., Tobias I., Olson W. K. Computer simulation of protein-induced structural changes in closed circular DNA. J Mol Biol. 1994 Sep 23;242(3):271–290. doi: 10.1006/jmbi.1994.1578. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES